Cargando…

Evolution of heterogeneity under constant and variable environments

Various definitions of fitness are essentially based on the number of descendants of an allele or a phenotype after a sufficiently long time. However, these different definitions do not explicate the continuous evolution of life histories. Herein, we focus on the eigenfunction of an age-structured p...

Descripción completa

Detalles Bibliográficos
Autores principales: Oizumi, Ryo, Inaba, Hisashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8437290/
https://www.ncbi.nlm.nih.gov/pubmed/34516578
http://dx.doi.org/10.1371/journal.pone.0257377
Descripción
Sumario:Various definitions of fitness are essentially based on the number of descendants of an allele or a phenotype after a sufficiently long time. However, these different definitions do not explicate the continuous evolution of life histories. Herein, we focus on the eigenfunction of an age-structured population model as fitness. The function generates an equation, called the Hamilton–Jacobi–Bellman equation, that achieves adaptive control of life history in terms of both the presence and absence of the density effect. Further, we introduce a perturbation method that applies the solution of this equation to the long-term logarithmic growth rate of a stochastic structured population model. We adopt this method to realize the adaptive control of heterogeneity for an optimal foraging problem in a variable environment as the analyzable example. The result indicates that the eigenfunction is involved in adaptive strategies under all the environments listed herein. Thus, we aim to systematize adaptive life histories in the presence of density effects and variable environments using the proposed objective function as a universal fitness candidate.