Cargando…

A 3D Hologram With Mixed Reality Techniques to Improve Understanding of Pulmonary Lesions Caused by COVID-19: Randomized Controlled Trial

BACKGROUND: The COVID-19 outbreak has now become a pandemic and has had a serious adverse impact on global public health. The effect of COVID-19 on the lungs can be determined through 2D computed tomography (CT) imaging, which requires a high level of spatial imagination on the part of the medical p...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Songxiang, Xie, Mao, Zhang, Zhicai, Wu, Xinghuo, Gao, Fei, Lu, Lin, Zhang, Jiayao, Xie, Yi, Yang, Fan, Ye, Zhewei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8437403/
https://www.ncbi.nlm.nih.gov/pubmed/34061760
http://dx.doi.org/10.2196/24081
_version_ 1783752160009256960
author Liu, Songxiang
Xie, Mao
Zhang, Zhicai
Wu, Xinghuo
Gao, Fei
Lu, Lin
Zhang, Jiayao
Xie, Yi
Yang, Fan
Ye, Zhewei
author_facet Liu, Songxiang
Xie, Mao
Zhang, Zhicai
Wu, Xinghuo
Gao, Fei
Lu, Lin
Zhang, Jiayao
Xie, Yi
Yang, Fan
Ye, Zhewei
author_sort Liu, Songxiang
collection PubMed
description BACKGROUND: The COVID-19 outbreak has now become a pandemic and has had a serious adverse impact on global public health. The effect of COVID-19 on the lungs can be determined through 2D computed tomography (CT) imaging, which requires a high level of spatial imagination on the part of the medical provider. OBJECTIVE: The purpose of this study is to determine whether viewing a 3D hologram with mixed reality techniques can improve medical professionals’ understanding of the pulmonary lesions caused by COVID-19. METHODS: The study involved 60 participants, including 20 radiologists, 20 surgeons, and 20 medical students. Each of the three groups was randomly divided into two groups, either the 2D CT group (n=30; mean age 29 years [range 19-38 years]; males=20) or the 3D holographic group (n=30; mean age 30 years [range 20=38 years]; males=20). The two groups completed the same task, which involved identifying lung lesions caused by COVID-19 for 6 cases using a 2D CT or 3D hologram. Finally, an independent radiology professor rated the participants' performance (out of 100). All participants in two groups completed a Likert scale questionnaire regarding the educational utility and efficiency of 3D holograms. The National Aeronautics and Space Administration Task Load Index (NASA-TLX) was completed by all participants. RESULTS: The mean task score of the 3D hologram group (mean 91.98, SD 2.45) was significantly higher than that of the 2D CT group (mean 74.09, SD 7.59; P<.001). With the help of 3D holograms, surgeons and medical students achieved the same score as radiologists and made obvious progress in identifying pulmonary lesions caused by COVID-19. The Likert scale questionnaire results showed that the 3D hologram group had superior results compared to the 2D CT group (teaching: 2D CT group median 2, IQR 1-2 versus 3D group median 5, IQR 5-5; P<.001; understanding and communicating: 2D CT group median 1, IQR 1-1 versus 3D group median 5, IQR 5-5; P<.001; increasing interest: 2D CT group median 2, IQR 2-2 versus 3D group median 5, IQR 5-5; P<.001; lowering the learning curve: 2D CT group median 2, IQR 1-2 versus 3D group median 4, IQR 4-5; P<.001; spatial awareness: 2D CT group median 2, IQR 1-2 versus 3D group median 5, IQR 5-5; P<.001; learning: 2D CT group median 3, IQR 2-3 versus 3D group median 5, IQR 5-5; P<.001). The 3D group scored significantly lower than the 2D CT group for the “mental,” “temporal,” “performance,” and “frustration” subscales on the NASA-TLX. CONCLUSIONS: A 3D hologram with mixed reality techniques can be used to help medical professionals, especially medical students and newly hired doctors, better identify pulmonary lesions caused by COVID-19. It can be used in medical education to improve spatial awareness, increase interest, improve understandability, and lower the learning curve. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2100045845; http://www.chictr.org.cn/showprojen.aspx?proj=125761
format Online
Article
Text
id pubmed-8437403
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-84374032021-09-27 A 3D Hologram With Mixed Reality Techniques to Improve Understanding of Pulmonary Lesions Caused by COVID-19: Randomized Controlled Trial Liu, Songxiang Xie, Mao Zhang, Zhicai Wu, Xinghuo Gao, Fei Lu, Lin Zhang, Jiayao Xie, Yi Yang, Fan Ye, Zhewei J Med Internet Res Original Paper BACKGROUND: The COVID-19 outbreak has now become a pandemic and has had a serious adverse impact on global public health. The effect of COVID-19 on the lungs can be determined through 2D computed tomography (CT) imaging, which requires a high level of spatial imagination on the part of the medical provider. OBJECTIVE: The purpose of this study is to determine whether viewing a 3D hologram with mixed reality techniques can improve medical professionals’ understanding of the pulmonary lesions caused by COVID-19. METHODS: The study involved 60 participants, including 20 radiologists, 20 surgeons, and 20 medical students. Each of the three groups was randomly divided into two groups, either the 2D CT group (n=30; mean age 29 years [range 19-38 years]; males=20) or the 3D holographic group (n=30; mean age 30 years [range 20=38 years]; males=20). The two groups completed the same task, which involved identifying lung lesions caused by COVID-19 for 6 cases using a 2D CT or 3D hologram. Finally, an independent radiology professor rated the participants' performance (out of 100). All participants in two groups completed a Likert scale questionnaire regarding the educational utility and efficiency of 3D holograms. The National Aeronautics and Space Administration Task Load Index (NASA-TLX) was completed by all participants. RESULTS: The mean task score of the 3D hologram group (mean 91.98, SD 2.45) was significantly higher than that of the 2D CT group (mean 74.09, SD 7.59; P<.001). With the help of 3D holograms, surgeons and medical students achieved the same score as radiologists and made obvious progress in identifying pulmonary lesions caused by COVID-19. The Likert scale questionnaire results showed that the 3D hologram group had superior results compared to the 2D CT group (teaching: 2D CT group median 2, IQR 1-2 versus 3D group median 5, IQR 5-5; P<.001; understanding and communicating: 2D CT group median 1, IQR 1-1 versus 3D group median 5, IQR 5-5; P<.001; increasing interest: 2D CT group median 2, IQR 2-2 versus 3D group median 5, IQR 5-5; P<.001; lowering the learning curve: 2D CT group median 2, IQR 1-2 versus 3D group median 4, IQR 4-5; P<.001; spatial awareness: 2D CT group median 2, IQR 1-2 versus 3D group median 5, IQR 5-5; P<.001; learning: 2D CT group median 3, IQR 2-3 versus 3D group median 5, IQR 5-5; P<.001). The 3D group scored significantly lower than the 2D CT group for the “mental,” “temporal,” “performance,” and “frustration” subscales on the NASA-TLX. CONCLUSIONS: A 3D hologram with mixed reality techniques can be used to help medical professionals, especially medical students and newly hired doctors, better identify pulmonary lesions caused by COVID-19. It can be used in medical education to improve spatial awareness, increase interest, improve understandability, and lower the learning curve. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2100045845; http://www.chictr.org.cn/showprojen.aspx?proj=125761 JMIR Publications 2021-09-10 /pmc/articles/PMC8437403/ /pubmed/34061760 http://dx.doi.org/10.2196/24081 Text en ©Songxiang Liu, Mao Xie, Zhicai Zhang, Xinghuo Wu, Fei Gao, Lin Lu, Jiayao Zhang, Yi Xie, Fan Yang, Zhewei Ye. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 10.09.2021. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included.
spellingShingle Original Paper
Liu, Songxiang
Xie, Mao
Zhang, Zhicai
Wu, Xinghuo
Gao, Fei
Lu, Lin
Zhang, Jiayao
Xie, Yi
Yang, Fan
Ye, Zhewei
A 3D Hologram With Mixed Reality Techniques to Improve Understanding of Pulmonary Lesions Caused by COVID-19: Randomized Controlled Trial
title A 3D Hologram With Mixed Reality Techniques to Improve Understanding of Pulmonary Lesions Caused by COVID-19: Randomized Controlled Trial
title_full A 3D Hologram With Mixed Reality Techniques to Improve Understanding of Pulmonary Lesions Caused by COVID-19: Randomized Controlled Trial
title_fullStr A 3D Hologram With Mixed Reality Techniques to Improve Understanding of Pulmonary Lesions Caused by COVID-19: Randomized Controlled Trial
title_full_unstemmed A 3D Hologram With Mixed Reality Techniques to Improve Understanding of Pulmonary Lesions Caused by COVID-19: Randomized Controlled Trial
title_short A 3D Hologram With Mixed Reality Techniques to Improve Understanding of Pulmonary Lesions Caused by COVID-19: Randomized Controlled Trial
title_sort 3d hologram with mixed reality techniques to improve understanding of pulmonary lesions caused by covid-19: randomized controlled trial
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8437403/
https://www.ncbi.nlm.nih.gov/pubmed/34061760
http://dx.doi.org/10.2196/24081
work_keys_str_mv AT liusongxiang a3dhologramwithmixedrealitytechniquestoimproveunderstandingofpulmonarylesionscausedbycovid19randomizedcontrolledtrial
AT xiemao a3dhologramwithmixedrealitytechniquestoimproveunderstandingofpulmonarylesionscausedbycovid19randomizedcontrolledtrial
AT zhangzhicai a3dhologramwithmixedrealitytechniquestoimproveunderstandingofpulmonarylesionscausedbycovid19randomizedcontrolledtrial
AT wuxinghuo a3dhologramwithmixedrealitytechniquestoimproveunderstandingofpulmonarylesionscausedbycovid19randomizedcontrolledtrial
AT gaofei a3dhologramwithmixedrealitytechniquestoimproveunderstandingofpulmonarylesionscausedbycovid19randomizedcontrolledtrial
AT lulin a3dhologramwithmixedrealitytechniquestoimproveunderstandingofpulmonarylesionscausedbycovid19randomizedcontrolledtrial
AT zhangjiayao a3dhologramwithmixedrealitytechniquestoimproveunderstandingofpulmonarylesionscausedbycovid19randomizedcontrolledtrial
AT xieyi a3dhologramwithmixedrealitytechniquestoimproveunderstandingofpulmonarylesionscausedbycovid19randomizedcontrolledtrial
AT yangfan a3dhologramwithmixedrealitytechniquestoimproveunderstandingofpulmonarylesionscausedbycovid19randomizedcontrolledtrial
AT yezhewei a3dhologramwithmixedrealitytechniquestoimproveunderstandingofpulmonarylesionscausedbycovid19randomizedcontrolledtrial
AT liusongxiang 3dhologramwithmixedrealitytechniquestoimproveunderstandingofpulmonarylesionscausedbycovid19randomizedcontrolledtrial
AT xiemao 3dhologramwithmixedrealitytechniquestoimproveunderstandingofpulmonarylesionscausedbycovid19randomizedcontrolledtrial
AT zhangzhicai 3dhologramwithmixedrealitytechniquestoimproveunderstandingofpulmonarylesionscausedbycovid19randomizedcontrolledtrial
AT wuxinghuo 3dhologramwithmixedrealitytechniquestoimproveunderstandingofpulmonarylesionscausedbycovid19randomizedcontrolledtrial
AT gaofei 3dhologramwithmixedrealitytechniquestoimproveunderstandingofpulmonarylesionscausedbycovid19randomizedcontrolledtrial
AT lulin 3dhologramwithmixedrealitytechniquestoimproveunderstandingofpulmonarylesionscausedbycovid19randomizedcontrolledtrial
AT zhangjiayao 3dhologramwithmixedrealitytechniquestoimproveunderstandingofpulmonarylesionscausedbycovid19randomizedcontrolledtrial
AT xieyi 3dhologramwithmixedrealitytechniquestoimproveunderstandingofpulmonarylesionscausedbycovid19randomizedcontrolledtrial
AT yangfan 3dhologramwithmixedrealitytechniquestoimproveunderstandingofpulmonarylesionscausedbycovid19randomizedcontrolledtrial
AT yezhewei 3dhologramwithmixedrealitytechniquestoimproveunderstandingofpulmonarylesionscausedbycovid19randomizedcontrolledtrial