Cargando…
Research on Key Algorithms of the Lung CAD System Based on Cascade Feature and Hybrid Swarm Intelligence Optimization for MKL-SVM
Feature selection and lung nodule recognition are the core modules of the lung computer-aided detection (Lung CAD) system. To improve the performance of the Lung CAD system, algorithmic research is carried out for the above two parts, respectively. First, in view of the poor interpretability of deep...
Autores principales: | Chang, Jiayue, Li, Yang, Zheng, Hewei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8437608/ https://www.ncbi.nlm.nih.gov/pubmed/34527040 http://dx.doi.org/10.1155/2021/5491017 |
Ejemplares similares
-
Research on lung nodule recognition algorithm based on deep feature fusion and MKL-SVM-IPSO
por: Li, Yang, et al.
Publicado: (2022) -
A Hybrid Particle Swarm Optimization Algorithm with Dynamic Adjustment of Inertia Weight Based on a New Feature Selection Method to Optimize SVM Parameters
por: Wang, Jing, et al.
Publicado: (2023) -
A Generic Design of Driver Drowsiness and Stress Recognition Using MOGA Optimized Deep MKL-SVM
por: Chui, Kwok Tai, et al.
Publicado: (2020) -
A Hybrid Swarm Intelligence Algorithm for Intrusion Detection Using Significant Features
por: Amudha, P., et al.
Publicado: (2015) -
Feature Selection and Parameters Optimization of SVM Using Particle Swarm Optimization for Fault Classification in Power Distribution Systems
por: Cho, Ming-Yuan, et al.
Publicado: (2017)