Cargando…

Effects of Long-Term Exposure to L-Band High-Power Microwave on the Brain Function of Male Mice

Currently, the impact of electromagnetic field (EMF) exposure on the nervous system is an increasingly arousing public concern. The present study was designed to explore the effects of continuous long-term exposure to L-band high-power microwave (L-HPM) on brain function and related mechanisms. Fort...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Yanyun, Gao, Peng, Guo, Yichen, Chen, Qin, Lang, Haiyang, Guo, Qiyan, Miao, Xia, Li, Jing, Zeng, Lihua, Guo, Guozhen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8437633/
https://www.ncbi.nlm.nih.gov/pubmed/34527734
http://dx.doi.org/10.1155/2021/2237370
Descripción
Sumario:Currently, the impact of electromagnetic field (EMF) exposure on the nervous system is an increasingly arousing public concern. The present study was designed to explore the effects of continuous long-term exposure to L-band high-power microwave (L-HPM) on brain function and related mechanisms. Forty-eight male Institute of Cancer Research (ICR) mice were exposed to L-HPM at various power densities (0.5, 1.0, and 1.5 W/m(2)) and the brain function was examined at different time periods after exposure. The morphology of the brain was examined by hematoxylin-eosin (HE) and deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining. Furthermore, cholinergic markers, oxidative stress markers, and the expression of c-fos were evaluated to identify a “potential” mechanism. The results showed that exposure to L-HPM at 1.5 W/m(2) can cause generalized injuries in the hippocampus (CA1 and CA3) and cerebral cortex (the first somatosensory cortex) of mice, including cell apoptosis, cholinergic dysfunction, and oxidative damage. Moreover, the deleterious effects were closely related to the power density and exposure time, indicating that long-term and high-power density exposure may be detrimental to the nervous system.