Cargando…

The Use of Tissue Engineering to Fabricate Perfusable 3D Brain Microvessels in vitro

Tissue engineering of the blood-brain barrier (BBB) in vitro has been rapidly expanding to address the challenges of mimicking the native structure and function of the BBB. Most of these models utilize 2D conventional microfluidic techniques. However, 3D microvascular models offer the potential to m...

Descripción completa

Detalles Bibliográficos
Autores principales: Galpayage Dona, Kalpani N. Udeni, Hale, Jonathan Franklin, Salako, Tobi, Anandanatarajan, Akanksha, Tran, Kiet A., DeOre, Brandon J., Galie, Peter Adam, Ramirez, Servio Heybert, Andrews, Allison Michelle
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8438211/
https://www.ncbi.nlm.nih.gov/pubmed/34531761
http://dx.doi.org/10.3389/fphys.2021.715431
_version_ 1783752321687093248
author Galpayage Dona, Kalpani N. Udeni
Hale, Jonathan Franklin
Salako, Tobi
Anandanatarajan, Akanksha
Tran, Kiet A.
DeOre, Brandon J.
Galie, Peter Adam
Ramirez, Servio Heybert
Andrews, Allison Michelle
author_facet Galpayage Dona, Kalpani N. Udeni
Hale, Jonathan Franklin
Salako, Tobi
Anandanatarajan, Akanksha
Tran, Kiet A.
DeOre, Brandon J.
Galie, Peter Adam
Ramirez, Servio Heybert
Andrews, Allison Michelle
author_sort Galpayage Dona, Kalpani N. Udeni
collection PubMed
description Tissue engineering of the blood-brain barrier (BBB) in vitro has been rapidly expanding to address the challenges of mimicking the native structure and function of the BBB. Most of these models utilize 2D conventional microfluidic techniques. However, 3D microvascular models offer the potential to more closely recapitulate the cytoarchitecture and multicellular arrangement of in vivo microvasculature, and also can recreate branching and network topologies of the vascular bed. In this perspective, we discuss current 3D brain microvessel modeling techniques including templating, printing, and self-assembling capillary networks. Furthermore, we address the use of biological matrices and fluid dynamics. Finally, key challenges are identified along with future directions that will improve development of next generation of brain microvasculature models.
format Online
Article
Text
id pubmed-8438211
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-84382112021-09-15 The Use of Tissue Engineering to Fabricate Perfusable 3D Brain Microvessels in vitro Galpayage Dona, Kalpani N. Udeni Hale, Jonathan Franklin Salako, Tobi Anandanatarajan, Akanksha Tran, Kiet A. DeOre, Brandon J. Galie, Peter Adam Ramirez, Servio Heybert Andrews, Allison Michelle Front Physiol Physiology Tissue engineering of the blood-brain barrier (BBB) in vitro has been rapidly expanding to address the challenges of mimicking the native structure and function of the BBB. Most of these models utilize 2D conventional microfluidic techniques. However, 3D microvascular models offer the potential to more closely recapitulate the cytoarchitecture and multicellular arrangement of in vivo microvasculature, and also can recreate branching and network topologies of the vascular bed. In this perspective, we discuss current 3D brain microvessel modeling techniques including templating, printing, and self-assembling capillary networks. Furthermore, we address the use of biological matrices and fluid dynamics. Finally, key challenges are identified along with future directions that will improve development of next generation of brain microvasculature models. Frontiers Media S.A. 2021-08-31 /pmc/articles/PMC8438211/ /pubmed/34531761 http://dx.doi.org/10.3389/fphys.2021.715431 Text en Copyright © 2021 Galpayage Dona, Hale, Salako, Anandanatarajan, Tran, DeOre, Galie, Ramirez and Andrews. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Physiology
Galpayage Dona, Kalpani N. Udeni
Hale, Jonathan Franklin
Salako, Tobi
Anandanatarajan, Akanksha
Tran, Kiet A.
DeOre, Brandon J.
Galie, Peter Adam
Ramirez, Servio Heybert
Andrews, Allison Michelle
The Use of Tissue Engineering to Fabricate Perfusable 3D Brain Microvessels in vitro
title The Use of Tissue Engineering to Fabricate Perfusable 3D Brain Microvessels in vitro
title_full The Use of Tissue Engineering to Fabricate Perfusable 3D Brain Microvessels in vitro
title_fullStr The Use of Tissue Engineering to Fabricate Perfusable 3D Brain Microvessels in vitro
title_full_unstemmed The Use of Tissue Engineering to Fabricate Perfusable 3D Brain Microvessels in vitro
title_short The Use of Tissue Engineering to Fabricate Perfusable 3D Brain Microvessels in vitro
title_sort use of tissue engineering to fabricate perfusable 3d brain microvessels in vitro
topic Physiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8438211/
https://www.ncbi.nlm.nih.gov/pubmed/34531761
http://dx.doi.org/10.3389/fphys.2021.715431
work_keys_str_mv AT galpayagedonakalpaninudeni theuseoftissueengineeringtofabricateperfusable3dbrainmicrovesselsinvitro
AT halejonathanfranklin theuseoftissueengineeringtofabricateperfusable3dbrainmicrovesselsinvitro
AT salakotobi theuseoftissueengineeringtofabricateperfusable3dbrainmicrovesselsinvitro
AT anandanatarajanakanksha theuseoftissueengineeringtofabricateperfusable3dbrainmicrovesselsinvitro
AT trankieta theuseoftissueengineeringtofabricateperfusable3dbrainmicrovesselsinvitro
AT deorebrandonj theuseoftissueengineeringtofabricateperfusable3dbrainmicrovesselsinvitro
AT galiepeteradam theuseoftissueengineeringtofabricateperfusable3dbrainmicrovesselsinvitro
AT ramirezservioheybert theuseoftissueengineeringtofabricateperfusable3dbrainmicrovesselsinvitro
AT andrewsallisonmichelle theuseoftissueengineeringtofabricateperfusable3dbrainmicrovesselsinvitro
AT galpayagedonakalpaninudeni useoftissueengineeringtofabricateperfusable3dbrainmicrovesselsinvitro
AT halejonathanfranklin useoftissueengineeringtofabricateperfusable3dbrainmicrovesselsinvitro
AT salakotobi useoftissueengineeringtofabricateperfusable3dbrainmicrovesselsinvitro
AT anandanatarajanakanksha useoftissueengineeringtofabricateperfusable3dbrainmicrovesselsinvitro
AT trankieta useoftissueengineeringtofabricateperfusable3dbrainmicrovesselsinvitro
AT deorebrandonj useoftissueengineeringtofabricateperfusable3dbrainmicrovesselsinvitro
AT galiepeteradam useoftissueengineeringtofabricateperfusable3dbrainmicrovesselsinvitro
AT ramirezservioheybert useoftissueengineeringtofabricateperfusable3dbrainmicrovesselsinvitro
AT andrewsallisonmichelle useoftissueengineeringtofabricateperfusable3dbrainmicrovesselsinvitro