Cargando…

Bispecific binder redirected lentiviral vector enables in vivo engineering of CAR-T cells

BACKGROUND: Chimeric antigen receptor (CAR) T cells have shown considerable promise as a personalized cellular immunotherapy against B cell malignancies. However, the complex and lengthy manufacturing processes involved in generating CAR T cell products ex vivo result in substantial production time...

Descripción completa

Detalles Bibliográficos
Autores principales: Huckaby, Justin T, Landoni, Elisa, Jacobs, Timothy M, Savoldo, Barbara, Dotti, Gianpietro, Lai, Samuel K
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8438880/
https://www.ncbi.nlm.nih.gov/pubmed/34518288
http://dx.doi.org/10.1136/jitc-2021-002737
Descripción
Sumario:BACKGROUND: Chimeric antigen receptor (CAR) T cells have shown considerable promise as a personalized cellular immunotherapy against B cell malignancies. However, the complex and lengthy manufacturing processes involved in generating CAR T cell products ex vivo result in substantial production time delays and high costs. Furthermore, ex vivo expansion of T cells promotes cell differentiation that reduces their in vivo replicative capacity and longevity. METHODS: Here, to overcome these limitations, CAR-T cells are engineered directly in vivo by administering a lentivirus expressing a mutant Sindbis envelope, coupled with a bispecific antibody binder that redirects the virus to CD3(+) human T cells. RESULTS: This redirected lentiviral system offers exceptional specificity and efficiency; a single dose of the virus delivered to immunodeficient mice engrafted with human peripheral blood mononuclear cells generates CD19-specific CAR-T cells that markedly control the growth of an aggressive pre-established xenograft B cell tumor. CONCLUSIONS: These findings underscore in vivo engineering of CAR-T cells as a promising approach for personalized cancer immunotherapy.