Cargando…

Fer exacerbates renal fibrosis and can be targeted by miR-29c-3p

AIM: Renal fibrosis (RF) is a common clinical condition leading to irreversible renal function loss. Tyrosine kinase proteins and microRNAs (miRs) are associated with pathogenesis and we aim to investigate the role of Fer and its partner miR(s) in RF. METHOD: In silico reproduction of Mouse Kidney F...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Chen-Min, Zhang, Wen-Yi, Wang, Shu-Yan, Qian, Gang, Pei, Dong-Liang, Zhang, Guang-Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8439263/
https://www.ncbi.nlm.nih.gov/pubmed/34595351
http://dx.doi.org/10.1515/med-2021-0319
Descripción
Sumario:AIM: Renal fibrosis (RF) is a common clinical condition leading to irreversible renal function loss. Tyrosine kinase proteins and microRNAs (miRs) are associated with pathogenesis and we aim to investigate the role of Fer and its partner miR(s) in RF. METHOD: In silico reproduction of Mouse Kidney FibrOmics browser was performed to identify potential miR(s) and target gene(s). In vivo validation was performed in C57BL/6 mice with unilateral ureteral obstruction (UUO). In vitro validation was performed in rat kidney fibroblast NRK-49F cells. Mimics and inhibitors of miR-29c-3p were constructed. The target gene Fer was monitored by RT-PCR and western blotting. The levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α in serum and media were measured by ELISA. RESULTS: The Fer expression and protein level were gradually increased during 14 days of UUO modeling. miR-29c-3p expression was strongly correlated with that of Fer. In vivo validation showed increased expressions of fibrosis-associated genes and increased phospoho-Smad3 level in the UUO model. Fer-knockdown (KD) significantly decreased expressions of fibrosis-associated genes. Pharmaceutical inhibition of Fer showed similar effects to miR-29c-3p, and miR inhibition showed a significant decrease of excretion of inflammatory factors. CONCLUSION: Dysregulation of miR-29c-3p and Fer plays a role in RF. Pharmaceutical or genetic inhibition of Fer may serve as the potential treatment for RF.