Cargando…
Solving the SSVEP Paradigm Using the Nonlinear Canonical Correlation Analysis Approach
This paper presents the implementation of nonlinear canonical correlation analysis (NLCCA) approach to detect steady-state visual evoked potentials (SSVEP) quickly. The need for the fast recognition of proper stimulus to help end an SSVEP task in a BCI system is justified due to the flickering exter...
Autores principales: | De la Cruz-Guevara, Danni Rodrigo, Alfonso-Morales, Wilfredo, Caicedo-Bravo, Eduardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8439358/ https://www.ncbi.nlm.nih.gov/pubmed/34450750 http://dx.doi.org/10.3390/s21165308 |
Ejemplares similares
-
Sinc-Windowing and Multiple Correlation Coefficients Improve SSVEP Recognition Based on Canonical Correlation Analysis
por: Mondini, Valeria, et al.
Publicado: (2018) -
Efficient Low-Frequency SSVEP Detection with Wearable EEG Using Normalized Canonical Correlation Analysis
por: Kartsch, Victor Javier, et al.
Publicado: (2022) -
Nonlinear Origin of SSVEP Spectra—A Combined Experimental and Modeling Study
por: Labecki, Maciej, et al.
Publicado: (2016) -
Nonlinear Canonical Correlation Analysis:A Compressed Representation Approach
por: Painsky, Amichai, et al.
Publicado: (2020) -
A Data Analytics/Big Data Framework for Advanced Metering Infrastructure Data
por: Guerrero-Prado, Jenniffer S., et al.
Publicado: (2021)