Cargando…
MFBCNNC: Momentum factor biogeography convolutional neural network for COVID-19 detection via chest X-ray images [Image: see text]
AIM: By October 6, 2020, Coronavirus disease 2019 (COVID-19) was diagnosed worldwide, reaching 3,355,7427 people and 1,037,862 deaths. Detection of COVID-19 and pneumonia by the chest X-ray images is of great significance to control the development of the epidemic situation. The current COVID-19 and...
Autores principales: | Sun, Junding, Li, Xiang, Tang, Chaosheng, Wang, Shui-Hua, Zhang, Yu-Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440040/ https://www.ncbi.nlm.nih.gov/pubmed/34539094 http://dx.doi.org/10.1016/j.knosys.2021.107494 |
Ejemplares similares
-
ChestX-Ray6: Prediction of multiple diseases including COVID-19 from chest X-ray images using convolutional neural network [Image: see text]
por: Nahiduzzaman, Md., et al.
Publicado: (2023) -
DDCNNC: Dilated and depthwise separable convolutional neural Network for diagnosis COVID-19 via chest X-ray images
por: Li, Xiang, et al.
Publicado: (2021) -
COVID-19 detection in X-ray images using convolutional neural networks [Image: see text]
por: Arias-Garzón, Daniel, et al.
Publicado: (2021) -
COVID-19 detection on Chest X-ray images: A comparison of CNN architectures and ensembles [Image: see text]
por: Breve, Fabricio Aparecido
Publicado: (2022) -
Diagnosis of Pediatric Pneumonia with Ensemble of Deep Convolutional Neural Networks in Chest X-Ray Images
por: Ayan, Enes, et al.
Publicado: (2021)