Cargando…

Image Reconstruction Algorithm Based on Total Least Squares Target Correction for ECT

In the image reconstruction of the electrical capacitance tomography (ECT) system, the application of the total least squares theory transforms the ill-posed problem into a nonlinear unconstrained minimization problem, which avoids calculating the matrix inversion. But in the iterative process of th...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Lili, Lv, Hexiang, Chen, Deyun, Yang, Hailu, Li, Mingyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440107/
https://www.ncbi.nlm.nih.gov/pubmed/34531908
http://dx.doi.org/10.1155/2021/3766877
Descripción
Sumario:In the image reconstruction of the electrical capacitance tomography (ECT) system, the application of the total least squares theory transforms the ill-posed problem into a nonlinear unconstrained minimization problem, which avoids calculating the matrix inversion. But in the iterative process of the coefficient matrix, the ill-posed problem is also produced. For the effect on the final image reconstruction accuracy of this problem, combined with the principle of the ECT system, the coefficient matrix is targeted and updated in the overall least squares iteration process. The new coefficient matrix is calculated, and then, the regularization matrix is corrected according to the adaptive targeting singular value, which can reduce the ill-posed effect. In this study, the total least squares iterative method is improved by introducing the mathematical model of EIV to deal with the errors in the measured capacitance data and coefficient matrix. The effect of noise interference on the measurement capacitance data is reduced, and finally, the high-quality reconstructed images are calculated iteratively.