Cargando…
A Hybrid SSA and SMA with Mutation Opposition-Based Learning for Constrained Engineering Problems
Based on Salp Swarm Algorithm (SSA) and Slime Mould Algorithm (SMA), a novel hybrid optimization algorithm, named Hybrid Slime Mould Salp Swarm Algorithm (HSMSSA), is proposed to solve constrained engineering problems. SSA can obtain good results in solving some optimization problems. However, it is...
Autores principales: | Wang, Shuang, Liu, Qingxin, Liu, Yuxiang, Jia, Heming, Abualigah, Laith, Zheng, Rong, Wu, Di |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440113/ https://www.ncbi.nlm.nih.gov/pubmed/34531910 http://dx.doi.org/10.1155/2021/6379469 |
Ejemplares similares
-
An Improved Teaching-Learning-Based Optimization Algorithm with Reinforcement Learning Strategy for Solving Optimization Problems
por: Wu, Di, et al.
Publicado: (2022) -
Improved Dwarf Mongoose Optimization for Constrained Engineering Design Problems
por: Agushaka, Jeffrey O., et al.
Publicado: (2022) -
Hybrid Slime Mold and Arithmetic Optimization Algorithm with Random Center Learning and Restart Mutation
por: Chen, Hongmin, et al.
Publicado: (2023) -
Modified Harris Hawks Optimization Algorithm with Exploration Factor and Random Walk Strategy
por: Song, Meijia, et al.
Publicado: (2022) -
Enhanced Slime Mould Algorithm for Multilevel Thresholding Image Segmentation Using Entropy Measures
por: Lin, Shanying, et al.
Publicado: (2021)