Cargando…

LIVECell—A large-scale dataset for label-free live cell segmentation

Light microscopy combined with well-established protocols of two-dimensional cell culture facilitates high-throughput quantitative imaging to study biological phenomena. Accurate segmentation of individual cells in images enables exploration of complex biological questions, but can require sophistic...

Descripción completa

Detalles Bibliográficos
Autores principales: Edlund, Christoffer, Jackson, Timothy R., Khalid, Nabeel, Bevan, Nicola, Dale, Timothy, Dengel, Andreas, Ahmed, Sheraz, Trygg, Johan, Sjögren, Rickard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440198/
https://www.ncbi.nlm.nih.gov/pubmed/34462594
http://dx.doi.org/10.1038/s41592-021-01249-6
_version_ 1783752660614119424
author Edlund, Christoffer
Jackson, Timothy R.
Khalid, Nabeel
Bevan, Nicola
Dale, Timothy
Dengel, Andreas
Ahmed, Sheraz
Trygg, Johan
Sjögren, Rickard
author_facet Edlund, Christoffer
Jackson, Timothy R.
Khalid, Nabeel
Bevan, Nicola
Dale, Timothy
Dengel, Andreas
Ahmed, Sheraz
Trygg, Johan
Sjögren, Rickard
author_sort Edlund, Christoffer
collection PubMed
description Light microscopy combined with well-established protocols of two-dimensional cell culture facilitates high-throughput quantitative imaging to study biological phenomena. Accurate segmentation of individual cells in images enables exploration of complex biological questions, but can require sophisticated imaging processing pipelines in cases of low contrast and high object density. Deep learning-based methods are considered state-of-the-art for image segmentation but typically require vast amounts of annotated data, for which there is no suitable resource available in the field of label-free cellular imaging. Here, we present LIVECell, a large, high-quality, manually annotated and expert-validated dataset of phase-contrast images, consisting of over 1.6 million cells from a diverse set of cell morphologies and culture densities. To further demonstrate its use, we train convolutional neural network-based models using LIVECell and evaluate model segmentation accuracy with a proposed a suite of benchmarks.
format Online
Article
Text
id pubmed-8440198
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group US
record_format MEDLINE/PubMed
spelling pubmed-84401982021-09-22 LIVECell—A large-scale dataset for label-free live cell segmentation Edlund, Christoffer Jackson, Timothy R. Khalid, Nabeel Bevan, Nicola Dale, Timothy Dengel, Andreas Ahmed, Sheraz Trygg, Johan Sjögren, Rickard Nat Methods Resource Light microscopy combined with well-established protocols of two-dimensional cell culture facilitates high-throughput quantitative imaging to study biological phenomena. Accurate segmentation of individual cells in images enables exploration of complex biological questions, but can require sophisticated imaging processing pipelines in cases of low contrast and high object density. Deep learning-based methods are considered state-of-the-art for image segmentation but typically require vast amounts of annotated data, for which there is no suitable resource available in the field of label-free cellular imaging. Here, we present LIVECell, a large, high-quality, manually annotated and expert-validated dataset of phase-contrast images, consisting of over 1.6 million cells from a diverse set of cell morphologies and culture densities. To further demonstrate its use, we train convolutional neural network-based models using LIVECell and evaluate model segmentation accuracy with a proposed a suite of benchmarks. Nature Publishing Group US 2021-08-30 2021 /pmc/articles/PMC8440198/ /pubmed/34462594 http://dx.doi.org/10.1038/s41592-021-01249-6 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Resource
Edlund, Christoffer
Jackson, Timothy R.
Khalid, Nabeel
Bevan, Nicola
Dale, Timothy
Dengel, Andreas
Ahmed, Sheraz
Trygg, Johan
Sjögren, Rickard
LIVECell—A large-scale dataset for label-free live cell segmentation
title LIVECell—A large-scale dataset for label-free live cell segmentation
title_full LIVECell—A large-scale dataset for label-free live cell segmentation
title_fullStr LIVECell—A large-scale dataset for label-free live cell segmentation
title_full_unstemmed LIVECell—A large-scale dataset for label-free live cell segmentation
title_short LIVECell—A large-scale dataset for label-free live cell segmentation
title_sort livecell—a large-scale dataset for label-free live cell segmentation
topic Resource
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440198/
https://www.ncbi.nlm.nih.gov/pubmed/34462594
http://dx.doi.org/10.1038/s41592-021-01249-6
work_keys_str_mv AT edlundchristoffer livecellalargescaledatasetforlabelfreelivecellsegmentation
AT jacksontimothyr livecellalargescaledatasetforlabelfreelivecellsegmentation
AT khalidnabeel livecellalargescaledatasetforlabelfreelivecellsegmentation
AT bevannicola livecellalargescaledatasetforlabelfreelivecellsegmentation
AT daletimothy livecellalargescaledatasetforlabelfreelivecellsegmentation
AT dengelandreas livecellalargescaledatasetforlabelfreelivecellsegmentation
AT ahmedsheraz livecellalargescaledatasetforlabelfreelivecellsegmentation
AT tryggjohan livecellalargescaledatasetforlabelfreelivecellsegmentation
AT sjogrenrickard livecellalargescaledatasetforlabelfreelivecellsegmentation