Cargando…
Enhancing sensitivity of QCM for dengue type 1 virus detection using graphene-based polymer composites
Graphene oxide-molecularly imprinted polymer composites (GO-MIP) have attracted significant attention as recognition materials in sensing due to their outstanding properties in terms of electrical and thermal conductivity, high mechanical modulus, and the comparably straightforward way to functional...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440267/ https://www.ncbi.nlm.nih.gov/pubmed/34091710 http://dx.doi.org/10.1007/s00216-021-03410-8 |
Sumario: | Graphene oxide-molecularly imprinted polymer composites (GO-MIP) have attracted significant attention as recognition materials in sensing due to their outstanding properties in terms of electrical and thermal conductivity, high mechanical modulus, and the comparably straightforward way to functionalize them. The aim of this study was to design a MIP-based sensor recognition material and enhance its sensitivity by blending it with GO for sensing a harmful dengue hemorrhagic fever pathogen, namely the dengue type 1 virus (DENV-1). Polymer composites comprising GO incorporated to an acrylamide (AAM)/methacrylic acid (MAA)/methyl methacrylate (MMA)/N-vinylpyrrolidone (VP) copolymer were synthesized and compared to the “pure” MIP, i.e., the copolymer without GO. The pure polymer revealed a zeta potential of + 9.9 ± 0.5 mV, whereas GO sheets prepared have a zeta potential of − 60.3 ± 2.7 mV. This results in an overall zeta potential of − 11.2 ± 0.2 mV of the composite. Such polymer composites seem appropriate to bind the positively charged DENV-1 particle (+ 42.2 ± 2.8 mV). GO-MIP coated onto 10-MHz quartz crystal microbalance (QCM) sensors indeed revealed two times sensitivity compared to sensors based on the pure MIP. Furthermore, GO-polymer composites revealed imprinting factors of up to 21, compared to 3 of the pure MIP. When plotting the sensor characteristic in a semilogarithmic way, the composite sensor shows the linear response to DENV-1 in the concentration range from 10(0) to 10(3) pfu mL(−1). The corresponding limits of detection (S/N = 3) and quantification (S/N = 10) are 0.58 and 1.94 pfu mL(−1), respectively. Furthermore, imprinted polymer composites selectively bind DENV-1 without significant interference: DENV-2, DENV-3, DENV-4, respectively, yield 13–16% of DENV-1 signal. The sensor requires only about 15–20 min to obtain a result. GRAPHICAL ABSTRACT: [Image: see text] |
---|