Cargando…
[(18)F]FDG PET radiomics to predict disease-free survival in cervical cancer: a multi-scanner/center study with external validation
PURPOSE: To test the performances of native and tumour to liver ratio (TLR) radiomic features extracted from pre-treatment 2-[(18)F] fluoro-2-deoxy-D-glucose ([(18)F]FDG) PET/CT and combined with machine learning (ML) for predicting cancer recurrence in patients with locally advanced cervical cancer...
Autores principales: | Ferreira, Marta, Lovinfosse, Pierre, Hermesse, Johanne, Decuypere, Marjolein, Rousseau, Caroline, Lucia, François, Schick, Ulrike, Reinhold, Caroline, Robin, Philippe, Hatt, Mathieu, Visvikis, Dimitris, Bernard, Claire, Leijenaar, Ralph T. H., Kridelka, Frédéric, Lambin, Philippe, Meyer, Patrick E., Hustinx, Roland |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440288/ https://www.ncbi.nlm.nih.gov/pubmed/33772334 http://dx.doi.org/10.1007/s00259-021-05303-5 |
Ejemplares similares
-
Correction to: [(18)F]FDG PET radiomics to predict disease-free survival in cervical cancer: a multi-scanner/center study with external validation
por: Ferreira, Marta, et al.
Publicado: (2021) -
Convolutional neural networks for PET functional volume fully automatic segmentation: development and validation in a multi-center setting
por: Iantsen, Andrei, et al.
Publicado: (2021) -
Multicentric validation of radiomics findings: challenges and opportunities
por: Hatt, Mathieu, et al.
Publicado: (2019) -
External validation of a radiomic signature to predict p16 (HPV) status from standard CT images of anal cancer patients
por: Leijenaar, Ralph T. H., et al.
Publicado: (2023) -
A transfer learning approach to facilitate ComBat-based harmonization of multicentre radiomic features in new datasets
por: Da-ano, Ronrick, et al.
Publicado: (2021)