Cargando…
Author Correction: Low-count whole-body PET with deep learning in a multicenter and externally validated study
Autores principales: | Chaudhari, Akshay S., Mittra, Erik, Davidzon, Guido A., Gulaka, Praveen, Gandhi, Harsh, Brown, Adam, Zhang, Tao, Srinivas, Shyam, Gong, Enhao, Zaharchuk, Greg, Jadvar, Hossein |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440668/ https://www.ncbi.nlm.nih.gov/pubmed/34521985 http://dx.doi.org/10.1038/s41746-021-00512-6 |
Ejemplares similares
-
Low-count whole-body PET with deep learning in a multicenter and externally validated study
por: Chaudhari, Akshay S., et al.
Publicado: (2021) -
Authors’ reply
por: Nair, Akshay Gopinathan, et al.
Publicado: (2015) -
(18)F-FDG silicon photomultiplier PET/CT: A pilot study comparing semi-quantitative measurements with standard PET/CT
por: Baratto, Lucia, et al.
Publicado: (2017) -
Can Choline PET Tackle the Challenge of Imaging Prostate Cancer?
por: Jadvar, Hossein
Publicado: (2012) -
Initial experience with a SiPM-based PET/CT scanner: influence of acquisition time on image quality
por: Sonni, Ida, et al.
Publicado: (2018)