Cargando…
Stochastic binary synapses having sigmoidal cumulative distribution functions for unsupervised learning with spike timing-dependent plasticity
Spike timing-dependent plasticity (STDP), which is widely studied as a fundamental synaptic update rule for neuromorphic hardware, requires precise control of continuous weights. From the viewpoint of hardware implementation, a simplified update rule is desirable. Although simplified STDP with stoch...
Autores principales: | Nishi, Yoshifumi, Nomura, Kumiko, Marukame, Takao, Mizushima, Koichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440757/ https://www.ncbi.nlm.nih.gov/pubmed/34521895 http://dx.doi.org/10.1038/s41598-021-97583-y |
Ejemplares similares
-
Unsupervised Learning by Spike Timing Dependent Plasticity in Phase Change Memory (PCM) Synapses
por: Ambrogio, Stefano, et al.
Publicado: (2016) -
Memory Capacity of Networks with Stochastic Binary Synapses
por: Dubreuil, Alexis M., et al.
Publicado: (2014) -
Memory capacity of networks with stochastic binary synapses
por: Dubreuil, Alexis, et al.
Publicado: (2013) -
Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning
por: Covi, Erika, et al.
Publicado: (2016) -
A CMOS–memristor hybrid system for implementing stochastic binary spike timing-dependent plasticity
por: Ahmadi-Farsani, Javad, et al.
Publicado: (2022)