Cargando…
Multi-Modal Pain Intensity Assessment Based on Physiological Signals: A Deep Learning Perspective
Traditional pain assessment approaches ranging from self-reporting methods, to observational scales, rely on the ability of an individual to accurately assess and successfully report observed or experienced pain episodes. Automatic pain assessment tools are therefore more than desirable in cases whe...
Autores principales: | Thiam, Patrick, Hihn, Heinke, Braun, Daniel A., Kestler, Hans A., Schwenker, Friedhelm |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440852/ https://www.ncbi.nlm.nih.gov/pubmed/34539444 http://dx.doi.org/10.3389/fphys.2021.720464 |
Ejemplares similares
-
Exploring Deep Physiological Models for Nociceptive Pain Recognition
por: Thiam, Patrick, et al.
Publicado: (2019) -
Two-Stream Attention Network for Pain Recognition from Video Sequences
por: Thiam, Patrick, et al.
Publicado: (2020) -
Learnability of the Boolean Innerproduct in Deep Neural Networks
por: Erdal, Mehmet, et al.
Publicado: (2022) -
Automatic Screening for Perturbations in Boolean Networks
por: Schwab, Julian D., et al.
Publicado: (2018) -
Network Physiology of Exercise: Vision and Perspectives
por: Balagué, Natàlia, et al.
Publicado: (2020)