Cargando…
LC-Q-Orbitrap-MS/MS Characterization, Antioxidant Activity, and α-Glucosidase-Inhibiting Activity With In Silico Analysis of Extract From Clausena Indica (Datz.) Oliv Fruit Pericarps
Clausena indica (Datz.) Oliv fruit pericarps (CIOPs) is an important agro-industrial by-product rich in active components. In this article, the effects of traditional and green deep eutectic solvents (DESs) on the high-performance liquid chromatography (HPLC) characterization, antioxidant activities...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440871/ https://www.ncbi.nlm.nih.gov/pubmed/34540879 http://dx.doi.org/10.3389/fnut.2021.727087 |
_version_ | 1783752756980350976 |
---|---|
author | Wang, Ruimin He, Ruiping Li, Zhaohui Wang, Lu |
author_facet | Wang, Ruimin He, Ruiping Li, Zhaohui Wang, Lu |
author_sort | Wang, Ruimin |
collection | PubMed |
description | Clausena indica (Datz.) Oliv fruit pericarps (CIOPs) is an important agro-industrial by-product rich in active components. In this article, the effects of traditional and green deep eutectic solvents (DESs) on the high-performance liquid chromatography (HPLC) characterization, antioxidant activities, and α-glucosidase-inhibitory activity of phenolic extracts from CIOPs were investigated for the first time. The results showed that ChCl-Gly and Bet-CA had higher extraction efficiency for the total phenolic content (TPC, 64.14–64.83 mg GAE/g DW) and total flavonoid content (TFC, 47.83–48.11 mg RE/g DW) compared with the traditional solvents (water, methanol, and ethyl acetate). LC-Q-Orbitrap-MS/MS was adopted to identify the phenolic compositions of the CIOPs extracts. HPLC-diode array detection (HPLC-DAD) results indicated that arbutin, (–)-epigallocatechin, chlorogenic acid, procyanidin B1, (+)-catechin, and (–)-epicatechin were the major components for all extracts, especially for deep eutectic solvents (DESs). In addition, ChCl-Xyl and ChCl-Gly extracts showed higher antioxidant activities against 2,2-diphenyl-1-picrylhydrazyl (DPPH(•)), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS(+•)), ferric reducing antioxidant power (FRAP), reducing power (RP), and cupric ion reducing antioxidant capacity (CUPRAC) than extracts extracted by other solvents. A strong α-glucosidase-inhibiting activity (IC(50), 156.25-291.11 μg/ml) was found in three DESs extracts. Furthermore, in silico analysis of the major phenolics in the CIOPs extracts was carried out to explore their interactions with α-glucosidase. Multivariate analysis was carried out to determine the key factors affecting the antioxidant activity and α-glucosidase-inhibiting activity. In short, DES can be taken as a promising solvent for valorization and recovery of bioactive compounds from agro-industrial by-products. The results verified that CIOPs can be used as a prospective source rich in bio-active compounds applied in the food and pharmacy industries. |
format | Online Article Text |
id | pubmed-8440871 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84408712021-09-16 LC-Q-Orbitrap-MS/MS Characterization, Antioxidant Activity, and α-Glucosidase-Inhibiting Activity With In Silico Analysis of Extract From Clausena Indica (Datz.) Oliv Fruit Pericarps Wang, Ruimin He, Ruiping Li, Zhaohui Wang, Lu Front Nutr Nutrition Clausena indica (Datz.) Oliv fruit pericarps (CIOPs) is an important agro-industrial by-product rich in active components. In this article, the effects of traditional and green deep eutectic solvents (DESs) on the high-performance liquid chromatography (HPLC) characterization, antioxidant activities, and α-glucosidase-inhibitory activity of phenolic extracts from CIOPs were investigated for the first time. The results showed that ChCl-Gly and Bet-CA had higher extraction efficiency for the total phenolic content (TPC, 64.14–64.83 mg GAE/g DW) and total flavonoid content (TFC, 47.83–48.11 mg RE/g DW) compared with the traditional solvents (water, methanol, and ethyl acetate). LC-Q-Orbitrap-MS/MS was adopted to identify the phenolic compositions of the CIOPs extracts. HPLC-diode array detection (HPLC-DAD) results indicated that arbutin, (–)-epigallocatechin, chlorogenic acid, procyanidin B1, (+)-catechin, and (–)-epicatechin were the major components for all extracts, especially for deep eutectic solvents (DESs). In addition, ChCl-Xyl and ChCl-Gly extracts showed higher antioxidant activities against 2,2-diphenyl-1-picrylhydrazyl (DPPH(•)), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS(+•)), ferric reducing antioxidant power (FRAP), reducing power (RP), and cupric ion reducing antioxidant capacity (CUPRAC) than extracts extracted by other solvents. A strong α-glucosidase-inhibiting activity (IC(50), 156.25-291.11 μg/ml) was found in three DESs extracts. Furthermore, in silico analysis of the major phenolics in the CIOPs extracts was carried out to explore their interactions with α-glucosidase. Multivariate analysis was carried out to determine the key factors affecting the antioxidant activity and α-glucosidase-inhibiting activity. In short, DES can be taken as a promising solvent for valorization and recovery of bioactive compounds from agro-industrial by-products. The results verified that CIOPs can be used as a prospective source rich in bio-active compounds applied in the food and pharmacy industries. Frontiers Media S.A. 2021-09-01 /pmc/articles/PMC8440871/ /pubmed/34540879 http://dx.doi.org/10.3389/fnut.2021.727087 Text en Copyright © 2021 Wang, He, Li and Wang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Nutrition Wang, Ruimin He, Ruiping Li, Zhaohui Wang, Lu LC-Q-Orbitrap-MS/MS Characterization, Antioxidant Activity, and α-Glucosidase-Inhibiting Activity With In Silico Analysis of Extract From Clausena Indica (Datz.) Oliv Fruit Pericarps |
title | LC-Q-Orbitrap-MS/MS Characterization, Antioxidant Activity, and α-Glucosidase-Inhibiting Activity With In Silico Analysis of Extract From Clausena Indica (Datz.) Oliv Fruit Pericarps |
title_full | LC-Q-Orbitrap-MS/MS Characterization, Antioxidant Activity, and α-Glucosidase-Inhibiting Activity With In Silico Analysis of Extract From Clausena Indica (Datz.) Oliv Fruit Pericarps |
title_fullStr | LC-Q-Orbitrap-MS/MS Characterization, Antioxidant Activity, and α-Glucosidase-Inhibiting Activity With In Silico Analysis of Extract From Clausena Indica (Datz.) Oliv Fruit Pericarps |
title_full_unstemmed | LC-Q-Orbitrap-MS/MS Characterization, Antioxidant Activity, and α-Glucosidase-Inhibiting Activity With In Silico Analysis of Extract From Clausena Indica (Datz.) Oliv Fruit Pericarps |
title_short | LC-Q-Orbitrap-MS/MS Characterization, Antioxidant Activity, and α-Glucosidase-Inhibiting Activity With In Silico Analysis of Extract From Clausena Indica (Datz.) Oliv Fruit Pericarps |
title_sort | lc-q-orbitrap-ms/ms characterization, antioxidant activity, and α-glucosidase-inhibiting activity with in silico analysis of extract from clausena indica (datz.) oliv fruit pericarps |
topic | Nutrition |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440871/ https://www.ncbi.nlm.nih.gov/pubmed/34540879 http://dx.doi.org/10.3389/fnut.2021.727087 |
work_keys_str_mv | AT wangruimin lcqorbitrapmsmscharacterizationantioxidantactivityandaglucosidaseinhibitingactivitywithinsilicoanalysisofextractfromclausenaindicadatzolivfruitpericarps AT heruiping lcqorbitrapmsmscharacterizationantioxidantactivityandaglucosidaseinhibitingactivitywithinsilicoanalysisofextractfromclausenaindicadatzolivfruitpericarps AT lizhaohui lcqorbitrapmsmscharacterizationantioxidantactivityandaglucosidaseinhibitingactivitywithinsilicoanalysisofextractfromclausenaindicadatzolivfruitpericarps AT wanglu lcqorbitrapmsmscharacterizationantioxidantactivityandaglucosidaseinhibitingactivitywithinsilicoanalysisofextractfromclausenaindicadatzolivfruitpericarps |