Cargando…
Clinically-Driven Virtual Patient Cohorts Generation: An Application to Aorta
The combination of machine learning methods together with computational modeling and simulation of the cardiovascular system brings the possibility of obtaining very valuable information about new therapies or clinical devices through in-silico experiments. However, the application of machine learni...
Autores principales: | Romero, Pau, Lozano, Miguel, Martínez-Gil, Francisco, Serra, Dolors, Sebastián, Rafael, Lamata, Pablo, García-Fernández, Ignacio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440937/ https://www.ncbi.nlm.nih.gov/pubmed/34539438 http://dx.doi.org/10.3389/fphys.2021.713118 |
Ejemplares similares
-
Atrial Fibrosis Hampers Non-invasive Localization of Atrial Ectopic Foci From Multi-Electrode Signals: A 3D Simulation Study
por: Godoy, Eduardo Jorge, et al.
Publicado: (2018) -
Hemodynamics-driven mathematical model of third heart sound generation
por: Shahmohammadi, Mehrdad, et al.
Publicado: (2022) -
Real-time diameter of the fetal aorta from ultrasound
por: Savioli, Nicoló, et al.
Publicado: (2019) -
Mechanisms of Impaired Brown Adipose Tissue Recruitment in Obesity
por: Alcalá, Martín, et al.
Publicado: (2019) -
Biomechanical Material Characterization of Stanford Type-B Dissected Porcine Aortas
por: Ahuja, Aashish, et al.
Publicado: (2018)