Cargando…
Effects of endurance training on the expression of host proteins involved in SARS‐CoV‐2 cell entry in C57BL/6J mouse
The coronavirus disease 2019 (COVID‐19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), is threatening people's lives and impacting their health. It is still unclear whether people engaged in physical activity are at an increased risk of SARS‐CoV‐2 infection an...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440939/ https://www.ncbi.nlm.nih.gov/pubmed/34523264 http://dx.doi.org/10.14814/phy2.15014 |
_version_ | 1783752772602036224 |
---|---|
author | Tamura, Yuki Jee, Eunbin Kouzaki, Karina Kotani, Takaya Nakazato, Koichi |
author_facet | Tamura, Yuki Jee, Eunbin Kouzaki, Karina Kotani, Takaya Nakazato, Koichi |
author_sort | Tamura, Yuki |
collection | PubMed |
description | The coronavirus disease 2019 (COVID‐19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), is threatening people's lives and impacting their health. It is still unclear whether people engaged in physical activity are at an increased risk of SARS‐CoV‐2 infection and severe forms of COVID‐19. In order to provide data to help answer this question, we, therefore, investigated the effects of endurance training on the levels of host proteins involved in SARS‐CoV‐2 infection in mice. Eight‐week‐old C57BL/6J mice were subjected to treadmill running (17–25 m/min, 60–90 min, 5 sessions/week, 8 weeks). After the intervention, the levels of angiotensin‐converting enzyme 2 (ACE2; host receptor for SARS‐CoV‐2), transmembrane protease serine 2 (TMPRSS2; host protease priming fusion of SARS‐CoV‐2 to host cell membranes), FURIN (host protease that promotes binding of SARS‐CoV‐2 to host receptors), and Neuropilin‐1 (host coreceptor for SARS‐CoV‐2) were measured in 10 organs that SARS‐CoV‐2 can infect (larynx, trachea, lung, heart, jejunum, ileum, colon, liver, kidney, and testis). Six organs (heart, lung, jejunum, liver, trachea, and ileum) showed changes in the levels of at least one of the proteins. Endurance training increased ACE2 levels in heart (+66.4%), lung (+37.1%), jejunum (+24.7%) and liver (+27.4%), and FURIN in liver (+17.9%) tissue. In contrast, endurance training decreased Neuropilin‐1 levels in liver (−39.7%), trachea (−41.2%), and ileum (−39.7%), and TMPRSS2 in lung (−11.3%). Taken together, endurance training altered the levels of host proteins involved in SARS‐CoV‐2 cell entry in an organ‐dependent manner. |
format | Online Article Text |
id | pubmed-8440939 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84409392021-09-15 Effects of endurance training on the expression of host proteins involved in SARS‐CoV‐2 cell entry in C57BL/6J mouse Tamura, Yuki Jee, Eunbin Kouzaki, Karina Kotani, Takaya Nakazato, Koichi Physiol Rep ORIGINAL ARTICLES The coronavirus disease 2019 (COVID‐19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), is threatening people's lives and impacting their health. It is still unclear whether people engaged in physical activity are at an increased risk of SARS‐CoV‐2 infection and severe forms of COVID‐19. In order to provide data to help answer this question, we, therefore, investigated the effects of endurance training on the levels of host proteins involved in SARS‐CoV‐2 infection in mice. Eight‐week‐old C57BL/6J mice were subjected to treadmill running (17–25 m/min, 60–90 min, 5 sessions/week, 8 weeks). After the intervention, the levels of angiotensin‐converting enzyme 2 (ACE2; host receptor for SARS‐CoV‐2), transmembrane protease serine 2 (TMPRSS2; host protease priming fusion of SARS‐CoV‐2 to host cell membranes), FURIN (host protease that promotes binding of SARS‐CoV‐2 to host receptors), and Neuropilin‐1 (host coreceptor for SARS‐CoV‐2) were measured in 10 organs that SARS‐CoV‐2 can infect (larynx, trachea, lung, heart, jejunum, ileum, colon, liver, kidney, and testis). Six organs (heart, lung, jejunum, liver, trachea, and ileum) showed changes in the levels of at least one of the proteins. Endurance training increased ACE2 levels in heart (+66.4%), lung (+37.1%), jejunum (+24.7%) and liver (+27.4%), and FURIN in liver (+17.9%) tissue. In contrast, endurance training decreased Neuropilin‐1 levels in liver (−39.7%), trachea (−41.2%), and ileum (−39.7%), and TMPRSS2 in lung (−11.3%). Taken together, endurance training altered the levels of host proteins involved in SARS‐CoV‐2 cell entry in an organ‐dependent manner. John Wiley and Sons Inc. 2021-09-14 /pmc/articles/PMC8440939/ /pubmed/34523264 http://dx.doi.org/10.14814/phy2.15014 Text en © 2021 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | ORIGINAL ARTICLES Tamura, Yuki Jee, Eunbin Kouzaki, Karina Kotani, Takaya Nakazato, Koichi Effects of endurance training on the expression of host proteins involved in SARS‐CoV‐2 cell entry in C57BL/6J mouse |
title | Effects of endurance training on the expression of host proteins involved in SARS‐CoV‐2 cell entry in C57BL/6J mouse |
title_full | Effects of endurance training on the expression of host proteins involved in SARS‐CoV‐2 cell entry in C57BL/6J mouse |
title_fullStr | Effects of endurance training on the expression of host proteins involved in SARS‐CoV‐2 cell entry in C57BL/6J mouse |
title_full_unstemmed | Effects of endurance training on the expression of host proteins involved in SARS‐CoV‐2 cell entry in C57BL/6J mouse |
title_short | Effects of endurance training on the expression of host proteins involved in SARS‐CoV‐2 cell entry in C57BL/6J mouse |
title_sort | effects of endurance training on the expression of host proteins involved in sars‐cov‐2 cell entry in c57bl/6j mouse |
topic | ORIGINAL ARTICLES |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440939/ https://www.ncbi.nlm.nih.gov/pubmed/34523264 http://dx.doi.org/10.14814/phy2.15014 |
work_keys_str_mv | AT tamurayuki effectsofendurancetrainingontheexpressionofhostproteinsinvolvedinsarscov2cellentryinc57bl6jmouse AT jeeeunbin effectsofendurancetrainingontheexpressionofhostproteinsinvolvedinsarscov2cellentryinc57bl6jmouse AT kouzakikarina effectsofendurancetrainingontheexpressionofhostproteinsinvolvedinsarscov2cellentryinc57bl6jmouse AT kotanitakaya effectsofendurancetrainingontheexpressionofhostproteinsinvolvedinsarscov2cellentryinc57bl6jmouse AT nakazatokoichi effectsofendurancetrainingontheexpressionofhostproteinsinvolvedinsarscov2cellentryinc57bl6jmouse |