Cargando…
A Novel Two-Stage Refine Filtering Method for EEG-Based Motor Imagery Classification
Cerebral stroke is a common disease across the world, and it is a promising method to recognize the intention of stroke patients with the help of brain–computer interface (BCI). In the field of motor imagery (MI) classification, appropriate filtering is vital for feature extracting of electroencepha...
Autores principales: | Yan, Yuxin, Zhou, Haifeng, Huang, Lixin, Cheng, Xiao, Kuang, Shaolong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440963/ https://www.ncbi.nlm.nih.gov/pubmed/34539326 http://dx.doi.org/10.3389/fnins.2021.657540 |
Ejemplares similares
-
A Parallel Multiscale Filter Bank Convolutional Neural Networks for Motor Imagery EEG Classification
por: Wu, Hao, et al.
Publicado: (2019) -
Early-stage fusion of EEG and fNIRS improves classification of motor imagery
por: Li, Yang, et al.
Publicado: (2023) -
A Generalizable and Discriminative Learning Method for Deep EEG-Based Motor Imagery Classification
por: Huang, Xiuyu, et al.
Publicado: (2021) -
Local and global convolutional transformer-based motor imagery EEG classification
por: Zhang, Jiayang, et al.
Publicado: (2023) -
EEG channel selection based on sequential backward floating search for motor imagery classification
por: Tang, Chao, et al.
Publicado: (2022)