Cargando…
Transcription and chromatin-based surveillance mechanism controls suppression of cryptic antisense transcription
Phosphorylation of the RNA polymerase II C-terminal domain Y(1)S(2)P(3)T(4)S(5)P(6)S(7) consensus sequence coordinates key events during transcription, and its deregulation leads to defects in transcription and RNA processing. Here, we report that the histone deacetylase activity of the fission yeas...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8441049/ https://www.ncbi.nlm.nih.gov/pubmed/34496258 http://dx.doi.org/10.1016/j.celrep.2021.109671 |
_version_ | 1783752796828336128 |
---|---|
author | Heo, Dong-Hyuk Kuś, Krzysztof Grzechnik, Pawel Tan-Wong, Sue Mei Birot, Adrien Kecman, Tea Nielsen, Soren Zenkin, Nikolay Vasiljeva, Lidia |
author_facet | Heo, Dong-Hyuk Kuś, Krzysztof Grzechnik, Pawel Tan-Wong, Sue Mei Birot, Adrien Kecman, Tea Nielsen, Soren Zenkin, Nikolay Vasiljeva, Lidia |
author_sort | Heo, Dong-Hyuk |
collection | PubMed |
description | Phosphorylation of the RNA polymerase II C-terminal domain Y(1)S(2)P(3)T(4)S(5)P(6)S(7) consensus sequence coordinates key events during transcription, and its deregulation leads to defects in transcription and RNA processing. Here, we report that the histone deacetylase activity of the fission yeast Hos2/Set3 complex plays an important role in suppressing cryptic initiation of antisense transcription when RNA polymerase II phosphorylation is dysregulated due to the loss of Ssu72 phosphatase. Interestingly, although single Hos2 and Set3 mutants have little effect, loss of Hos2 or Set3 combined with ssu72Δ results in a synergistic increase in antisense transcription globally and correlates with elevated sensitivity to genotoxic agents. We demonstrate a key role for the Ssu72/Hos2/Set3 mechanism in the suppression of cryptic antisense transcription at the 3′ end of convergent genes that are most susceptible to these defects, ensuring the fidelity of gene expression within dense genomes of simple eukaryotes. |
format | Online Article Text |
id | pubmed-8441049 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-84410492021-09-20 Transcription and chromatin-based surveillance mechanism controls suppression of cryptic antisense transcription Heo, Dong-Hyuk Kuś, Krzysztof Grzechnik, Pawel Tan-Wong, Sue Mei Birot, Adrien Kecman, Tea Nielsen, Soren Zenkin, Nikolay Vasiljeva, Lidia Cell Rep Article Phosphorylation of the RNA polymerase II C-terminal domain Y(1)S(2)P(3)T(4)S(5)P(6)S(7) consensus sequence coordinates key events during transcription, and its deregulation leads to defects in transcription and RNA processing. Here, we report that the histone deacetylase activity of the fission yeast Hos2/Set3 complex plays an important role in suppressing cryptic initiation of antisense transcription when RNA polymerase II phosphorylation is dysregulated due to the loss of Ssu72 phosphatase. Interestingly, although single Hos2 and Set3 mutants have little effect, loss of Hos2 or Set3 combined with ssu72Δ results in a synergistic increase in antisense transcription globally and correlates with elevated sensitivity to genotoxic agents. We demonstrate a key role for the Ssu72/Hos2/Set3 mechanism in the suppression of cryptic antisense transcription at the 3′ end of convergent genes that are most susceptible to these defects, ensuring the fidelity of gene expression within dense genomes of simple eukaryotes. Cell Press 2021-09-07 /pmc/articles/PMC8441049/ /pubmed/34496258 http://dx.doi.org/10.1016/j.celrep.2021.109671 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Heo, Dong-Hyuk Kuś, Krzysztof Grzechnik, Pawel Tan-Wong, Sue Mei Birot, Adrien Kecman, Tea Nielsen, Soren Zenkin, Nikolay Vasiljeva, Lidia Transcription and chromatin-based surveillance mechanism controls suppression of cryptic antisense transcription |
title | Transcription and chromatin-based surveillance mechanism controls suppression of cryptic antisense transcription |
title_full | Transcription and chromatin-based surveillance mechanism controls suppression of cryptic antisense transcription |
title_fullStr | Transcription and chromatin-based surveillance mechanism controls suppression of cryptic antisense transcription |
title_full_unstemmed | Transcription and chromatin-based surveillance mechanism controls suppression of cryptic antisense transcription |
title_short | Transcription and chromatin-based surveillance mechanism controls suppression of cryptic antisense transcription |
title_sort | transcription and chromatin-based surveillance mechanism controls suppression of cryptic antisense transcription |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8441049/ https://www.ncbi.nlm.nih.gov/pubmed/34496258 http://dx.doi.org/10.1016/j.celrep.2021.109671 |
work_keys_str_mv | AT heodonghyuk transcriptionandchromatinbasedsurveillancemechanismcontrolssuppressionofcrypticantisensetranscription AT kuskrzysztof transcriptionandchromatinbasedsurveillancemechanismcontrolssuppressionofcrypticantisensetranscription AT grzechnikpawel transcriptionandchromatinbasedsurveillancemechanismcontrolssuppressionofcrypticantisensetranscription AT tanwongsuemei transcriptionandchromatinbasedsurveillancemechanismcontrolssuppressionofcrypticantisensetranscription AT birotadrien transcriptionandchromatinbasedsurveillancemechanismcontrolssuppressionofcrypticantisensetranscription AT kecmantea transcriptionandchromatinbasedsurveillancemechanismcontrolssuppressionofcrypticantisensetranscription AT nielsensoren transcriptionandchromatinbasedsurveillancemechanismcontrolssuppressionofcrypticantisensetranscription AT zenkinnikolay transcriptionandchromatinbasedsurveillancemechanismcontrolssuppressionofcrypticantisensetranscription AT vasiljevalidia transcriptionandchromatinbasedsurveillancemechanismcontrolssuppressionofcrypticantisensetranscription |