Cargando…

Pushing the methodological envelope in understanding the photo/electrosynthetic materials-microorganism interface

Biohybrid photo/electrosynthetic systems synergize microbial metabolic pathways and inorganic materials to generate the fuels and chemicals to power our society. They aim to combine the strengths of product selectivity from biological cells and efficient charge generation and light absorption of ino...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuruvinashetti, Kiran, Kornienko, Nikolay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8441150/
https://www.ncbi.nlm.nih.gov/pubmed/34553134
http://dx.doi.org/10.1016/j.isci.2021.103049
Descripción
Sumario:Biohybrid photo/electrosynthetic systems synergize microbial metabolic pathways and inorganic materials to generate the fuels and chemicals to power our society. They aim to combine the strengths of product selectivity from biological cells and efficient charge generation and light absorption of inorganic materials. However crucial mechanistic questions still remain. In this review we address significant knowledge gaps that must be closed and recent efforts to do so to push biohybrid systems closer to applicability. In particular, we focus on noteworthy advances that have recently been made in applying state-of-the-art analytical spectroscopic, electrochemical, and microelectronic techniques to help pinpoint key complexities of the microbe-materials interface. We discuss the basic function of these techniques, how they have been translated over to study biohybrid systems, and which key insights and implications have been extracted. Finally, we delve into the key advances necessary for the design of next generation biohybrid energy conversion systems.