Cargando…

Turning single bubble sonoluminescence from blue in pure water to green by adding trace amount of carbon nanodots

Sonoluminescence (SL) is an interesting physical effect which can convert acoustic energy into light pulses. Up to now, the microscopic mechanism of the SL has not yet been fully clear. It is known that hydroxyl radicals play the important role for SL from water. In this work, we take advantage of c...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Dan, Xu, Wen, Luo, Man, You, Kaijun, Tang, Ju, Wen, Hua, Cheng, Xingjia, Luo, Xiaobing, Wang, Zhibiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8441195/
https://www.ncbi.nlm.nih.gov/pubmed/34509955
http://dx.doi.org/10.1016/j.ultsonch.2021.105727
Descripción
Sumario:Sonoluminescence (SL) is an interesting physical effect which can convert acoustic energy into light pulses. Up to now, the microscopic mechanism of the SL has not yet been fully clear. It is known that hydroxyl radicals play the important role for SL from water. In this work, we take advantage of carbon nano-dots (CNDs) as free radical captors to modulate the hydroxyl radicals (OH(•)) in SL effect. Through studying the single bubble SL (SBSL) from CND aqueous solution (CNDAS) with trace amount of CNDs, we find that the color of SBSL is tuned dramatically from blue in water to green in CNDAS. Two different SL mechanisms can be identified from emission spectrum. One comes from blackbody-like radiation and another is attributed from the characteristic emission with identified peaks. The decrease in the yield of H(2)O(2) in the presence of CNDs suggests the modulation effect on SL via OH(•) interacting with CNDs. By comparison of the CNDs before and after sonication, it is found that hydroxyl radicals generated during SL can take part in the chain-like oxidation of the chemical groups attached to the CNDs to form larger amount of carboxyl groups. The blackbody temperature of blackbody-like radiation decreases from 15,600 K in water to 11,300 K in CNDAS. Moreover, the emission from hydroxyl radicals and two new luminescent centers related to carboxyl groups are introduced in SL from CNDAS. These important and interesting findings indicate that by adding trace amount of CNDs in water, the effect of SBSL can be significantly modulated, which can provide a macroscopic phenomenon for gaining an insight into the microscopic mechanism of the SL effect.