Cargando…
New Insights Into Osteoclast Biology
Osteoclasts are multinucleated cells that are characterized by their unique ability to resorb large quantities of bone. Therefore, they are frequently the target of therapeutic interventions to ameliorate bone loss. In an adult organism, osteoclasts derive from hematopoietic stem cells and different...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8441501/ https://www.ncbi.nlm.nih.gov/pubmed/34532619 http://dx.doi.org/10.1002/jbm4.10539 |
_version_ | 1783752881969561600 |
---|---|
author | McDonald, Michelle Maree Kim, Albert Sungsoo Mulholland, Bridie S Rauner, Martina |
author_facet | McDonald, Michelle Maree Kim, Albert Sungsoo Mulholland, Bridie S Rauner, Martina |
author_sort | McDonald, Michelle Maree |
collection | PubMed |
description | Osteoclasts are multinucleated cells that are characterized by their unique ability to resorb large quantities of bone. Therefore, they are frequently the target of therapeutic interventions to ameliorate bone loss. In an adult organism, osteoclasts derive from hematopoietic stem cells and differentiate into osteoclasts within a multistep process under the influence of macrophage colony‐stimulating factor (M‐CSF) and receptor activator of NF‐κB ligand (RANKL). Historically, the osteoclast life cycle has been defined as linear, whereby lineage‐committed mononuclear precursors fuse to generate multinucleated highly specialized and localized bone phagocytic cells, which then undergo apoptosis within weeks. Recent advances through lineage tracing, single cell RNA sequencing, parabiosis, and intravital imaging approaches have challenged this dogma, revealing they have greater longevity and the capacity to circulate and undergo cell recycling. Indeed, these new insights highlight that under homeostatic conditions very few incidences of osteoclast apoptosis occur. More importantly, as we revisit the formation and fate of the osteoclast, novel methods to target osteoclast biology in bone pathology and regeneration are emerging. This review briefly summarizes the historical life cycle of osteoclasts and highlights recent discoveries made through advanced methodologies, which have led to a paradigm shift in osteoclast biology. These findings are discussed in light of both existing and emerging bone targeted therapeutics, bone pathologies, and communication between osteoclasts and cells resident in bone or at distant sites. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. |
format | Online Article Text |
id | pubmed-8441501 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84415012021-09-15 New Insights Into Osteoclast Biology McDonald, Michelle Maree Kim, Albert Sungsoo Mulholland, Bridie S Rauner, Martina JBMR Plus Review Osteoclasts are multinucleated cells that are characterized by their unique ability to resorb large quantities of bone. Therefore, they are frequently the target of therapeutic interventions to ameliorate bone loss. In an adult organism, osteoclasts derive from hematopoietic stem cells and differentiate into osteoclasts within a multistep process under the influence of macrophage colony‐stimulating factor (M‐CSF) and receptor activator of NF‐κB ligand (RANKL). Historically, the osteoclast life cycle has been defined as linear, whereby lineage‐committed mononuclear precursors fuse to generate multinucleated highly specialized and localized bone phagocytic cells, which then undergo apoptosis within weeks. Recent advances through lineage tracing, single cell RNA sequencing, parabiosis, and intravital imaging approaches have challenged this dogma, revealing they have greater longevity and the capacity to circulate and undergo cell recycling. Indeed, these new insights highlight that under homeostatic conditions very few incidences of osteoclast apoptosis occur. More importantly, as we revisit the formation and fate of the osteoclast, novel methods to target osteoclast biology in bone pathology and regeneration are emerging. This review briefly summarizes the historical life cycle of osteoclasts and highlights recent discoveries made through advanced methodologies, which have led to a paradigm shift in osteoclast biology. These findings are discussed in light of both existing and emerging bone targeted therapeutics, bone pathologies, and communication between osteoclasts and cells resident in bone or at distant sites. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. John Wiley & Sons, Inc. 2021-08-30 /pmc/articles/PMC8441501/ /pubmed/34532619 http://dx.doi.org/10.1002/jbm4.10539 Text en © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review McDonald, Michelle Maree Kim, Albert Sungsoo Mulholland, Bridie S Rauner, Martina New Insights Into Osteoclast Biology |
title | New Insights Into Osteoclast Biology |
title_full | New Insights Into Osteoclast Biology |
title_fullStr | New Insights Into Osteoclast Biology |
title_full_unstemmed | New Insights Into Osteoclast Biology |
title_short | New Insights Into Osteoclast Biology |
title_sort | new insights into osteoclast biology |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8441501/ https://www.ncbi.nlm.nih.gov/pubmed/34532619 http://dx.doi.org/10.1002/jbm4.10539 |
work_keys_str_mv | AT mcdonaldmichellemaree newinsightsintoosteoclastbiology AT kimalbertsungsoo newinsightsintoosteoclastbiology AT mulhollandbridies newinsightsintoosteoclastbiology AT raunermartina newinsightsintoosteoclastbiology |