Cargando…
A quick battery charging curve prediction by artificial neural network
Battery health prognosis and monitoring require the information of the available battery capacity that Tian et al. (2021) proposes to acquire from a partial 10-min charging curve via a deep neural network.
Autor principal: | Hosen, Md Sazzad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8441573/ https://www.ncbi.nlm.nih.gov/pubmed/34553175 http://dx.doi.org/10.1016/j.patter.2021.100338 |
Ejemplares similares
-
Quick Access to Human Astrocytic Software that Drives Neuronal Hardware
por: Lundin, Anders, et al.
Publicado: (2018) -
Advancing sensory neuroprosthetics using artificial brain networks
por: Haslacher, David, et al.
Publicado: (2021) -
More than just sound: Harnessing metadata to improve neural network classifiers for medical auscultation
por: Matek, Christian
Publicado: (2022) -
Machine learning accelerates identification of lithiated phases in X-ray images of battery hosts
por: Mistry, Aashutosh, et al.
Publicado: (2022) -
Artificial intelligence for antibody reading comprehension: AntiBERTa
por: Choi, Yoonjoo
Publicado: (2022)