Cargando…
Phe2vec: Automated disease phenotyping based on unsupervised embeddings from electronic health records
Robust phenotyping of patients from electronic health records (EHRs) at scale is a challenge in clinical informatics. Here, we introduce Phe2vec, an automated framework for disease phenotyping from EHRs based on unsupervised learning and assess its effectiveness against standard rule-based algorithm...
Autores principales: | De Freitas, Jessica K., Johnson, Kipp W., Golden, Eddye, Nadkarni, Girish N., Dudley, Joel T., Bottinger, Erwin P., Glicksberg, Benjamin S., Miotto, Riccardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8441576/ https://www.ncbi.nlm.nih.gov/pubmed/34553174 http://dx.doi.org/10.1016/j.patter.2021.100337 |
Ejemplares similares
-
BioWordVec, improving biomedical word embeddings with subword information and MeSH
por: Zhang, Yijia, et al.
Publicado: (2019) -
Predicting hypertension onset from longitudinal electronic health records with deep learning
por: Datta, Suparno, et al.
Publicado: (2022) -
Sleep in the Natural Environment: A Pilot Study
por: Chaudhry, Fayzan F., et al.
Publicado: (2020) -
Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records
por: Miotto, Riccardo, et al.
Publicado: (2016) -
Coronavirus 2019 and People Living With Human Immunodeficiency Virus: Outcomes for Hospitalized Patients in New York City
por: Sigel, Keith, et al.
Publicado: (2020)