Cargando…
Capture the high-efficiency non-fullerene ternary organic solar cells formula by machine-learning-assisted energy-level alignment optimization
Appropriate energy-level alignment in non-fullerene ternary organic solar cells (OSCs) can enhance the power conversion efficiencies (PCEs), due to the simultaneous improvement in charge generation/transportation and reduction in voltage loss. Seven machine-learning (ML) algorithms were used to buil...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8441578/ https://www.ncbi.nlm.nih.gov/pubmed/34553173 http://dx.doi.org/10.1016/j.patter.2021.100333 |
Sumario: | Appropriate energy-level alignment in non-fullerene ternary organic solar cells (OSCs) can enhance the power conversion efficiencies (PCEs), due to the simultaneous improvement in charge generation/transportation and reduction in voltage loss. Seven machine-learning (ML) algorithms were used to build the regression and classification models based on energy-level parameters to predict PCE and capture high-performance material combinations, and random forest showed the best predictive capability. Furthermore, two sets of verification experiments were designed to compare the experimental and predicted results. The outcome elucidated that a deep lowest unoccupied molecular orbital (LUMO) of the non-fullerene acceptors can slightly reduce the open-circuit voltage (V(OC)) but significantly improve short-circuit current density (J(SC)), and, to a certain extent, the V(OC) could be optimized by the slightly up-shifted LUMO of the third component in non-fullerene ternary OSCs. Consequently, random forest can provide an effective global optimization scheme and capture multi-component combinations for high-efficiency ternary OSCs. |
---|