Cargando…
A multivariate statistical approach to predict COVID‐19 count data with epidemiological interpretation and uncertainty quantification
For the analysis of COVID‐19 pandemic data, we propose Bayesian multinomial and Dirichlet‐multinomial autoregressive models for time‐series of counts of patients in mutually exclusive and exhaustive observational categories, defined according to the severity of the patient status and the required tr...
Autores principales: | Bartolucci, Francesco, Pennoni, Fulvia, Mira, Antonietta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8441832/ https://www.ncbi.nlm.nih.gov/pubmed/34374438 http://dx.doi.org/10.1002/sim.9129 |
Ejemplares similares
-
Latent Markov models for longitudinal data
por: Bartolucci, Francesco, et al.
Publicado: (2012) -
Risk of adverse events in gastrointestinal endoscopy: Zero-inflated Poisson regression mixture model for count data and multinomial logit model for the type of event
por: Gemma, Marco, et al.
Publicado: (2021) -
Compression of quantification uncertainty for scRNA-seq counts
por: Van Buren, Scott, et al.
Publicado: (2021) -
Uncertainty quantification in epidemiological models for the COVID-19 pandemic
por: Taghizadeh, Leila, et al.
Publicado: (2020) -
Introducing Robust Statistics in the Uncertainty Quantification of Nuclear Safeguards Measurements
por: Cerasa, Andrea
Publicado: (2022)