Cargando…
A Deep-Network Piecewise Linear Approximation Formula
The mathematical foundation of deep learning is the theorem that any continuous function can be approximated within any specified accuracy by using a neural network with certain non-linear activation functions. However, this theorem does not tell us what the network architecture should be and what t...
Autor principal: | ZENG, GENGSHENG L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8442618/ https://www.ncbi.nlm.nih.gov/pubmed/34532202 http://dx.doi.org/10.1109/access.2021.3109173 |
Ejemplares similares
-
Time and Memory Efficient Online Piecewise Linear Approximation of Sensor Signals
por: Grützmacher, Florian, et al.
Publicado: (2018) -
Piecewise linear approximation of protein structures using the principle of minimum message length
por: Konagurthu, Arun S., et al.
Publicado: (2011) -
Transforming the canonical piecewise-linear model into a smooth-piecewise representation
por: Jimenez-Fernandez, Victor M., et al.
Publicado: (2016) -
Network-based piecewise linear regression for QSAR modelling
por: Cardoso-Silva, Jonathan, et al.
Publicado: (2019) -
Approximation methods for piecewise deterministic Markov processes and their costs
por: Kritzer, Peter, et al.
Publicado: (2019)