Cargando…
MEMES: Machine learning framework for Enhanced MolEcular Screening
In drug discovery applications, high throughput virtual screening exercises are routinely performed to determine an initial set of candidate molecules referred to as “hits”. In such an experiment, each molecule from a large small-molecule drug library is evaluated in terms of physical properties suc...
Autores principales: | Mehta, Sarvesh, Laghuvarapu, Siddhartha, Pathak, Yashaswi, Sethi, Aaftaab, Alvala, Mallika, Priyakumar, U. Deva |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8442698/ https://www.ncbi.nlm.nih.gov/pubmed/34659706 http://dx.doi.org/10.1039/d1sc02783b |
Ejemplares similares
-
MO-MEMES: A method for accelerating virtual screening using multi-objective Bayesian optimization
por: Mehta, Sarvesh, et al.
Publicado: (2022) -
Streamlining pipeline efficiency: a novel model-agnostic technique for accelerating conditional generative and virtual screening pipelines
por: Viswanathan, Karthik, et al.
Publicado: (2023) -
Crystal and molecular structure of aflatrem
por: Lenta, Bruno N., et al.
Publicado: (2015) -
Understanding the role of galectin inhibitors as potential candidates for SARS-CoV-2 spike protein: in silico studies
por: Sethi, Aaftaab, et al.
Publicado: (2020) -
Calixarene-based molecular capsule from olefin metathesis
por: Hailu, Shimelis T., et al.
Publicado: (2013)