Cargando…

Fluorescent probes for visualizing ROS-associated proteins in disease

Abnormal expression of proteins, including catalytic and expression dysfunction, is directly related to the development of various diseases in living organisms. Reactive oxygen species (ROS) could regulate protein expression by redox modification or cellular signal pathway and thus influence the dev...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Hui, Wang, Xin, Li, Ping, Dong, Mingyan, Yao, Shao Q., Tang, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8442704/
https://www.ncbi.nlm.nih.gov/pubmed/34659698
http://dx.doi.org/10.1039/d1sc02165f
Descripción
Sumario:Abnormal expression of proteins, including catalytic and expression dysfunction, is directly related to the development of various diseases in living organisms. Reactive oxygen species (ROS) could regulate protein expression by redox modification or cellular signal pathway and thus influence the development of disease. Determining the expression level and activity of these ROS-associated proteins is of considerable importance in early-stage disease diagnosis and the identification of new drug targets. Fluorescence imaging technology has emerged as a powerful tool for specific in situ imaging of target proteins by virtue of its non-invasiveness, high sensitivity and good spatiotemporal resolution. In this review, we summarize advances made in the past decade for the design of fluorescent probes that have contributed to tracking ROS-associated proteins in disease. We envision that this review will attract significant attention from a wide range of researchers in their utilization of fluorescent probes for in situ investigation of pathological processes synergistically regulated by both ROS and proteins.