Cargando…
Probing allosteric regulations with coevolution-driven molecular simulations
Protein-mediated allosteric regulations are essential in biology, but their quantitative characterization continues to posit formidable challenges for both experiments and computations. Here, we combine coevolutionary information, multiscale molecular simulations, and free-energy methods to interrog...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8442858/ https://www.ncbi.nlm.nih.gov/pubmed/34516882 http://dx.doi.org/10.1126/sciadv.abj0786 |
_version_ | 1783753079128064000 |
---|---|
author | Colizzi, Francesco Orozco, Modesto |
author_facet | Colizzi, Francesco Orozco, Modesto |
author_sort | Colizzi, Francesco |
collection | PubMed |
description | Protein-mediated allosteric regulations are essential in biology, but their quantitative characterization continues to posit formidable challenges for both experiments and computations. Here, we combine coevolutionary information, multiscale molecular simulations, and free-energy methods to interrogate and quantify the allosteric regulation of functional changes in protein complexes. We apply this approach to investigate the regulation of adenylyl cyclase (AC) by stimulatory and inhibitory G proteins—a prototypical allosteric system that has long escaped from in-depth molecular characterization. We reveal a surprisingly simple ON/OFF regulation of AC functional dynamics through multiple pathways of information transfer. The binding of G proteins reshapes the free-energy landscape of AC following the classical population-shift paradigm. The model agrees with structural and biochemical data and reveals previously unknown experimentally consistent intermediates. Our approach showcases a general strategy to explore uncharted functional space in complex biomolecular regulations. |
format | Online Article Text |
id | pubmed-8442858 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-84428582021-09-24 Probing allosteric regulations with coevolution-driven molecular simulations Colizzi, Francesco Orozco, Modesto Sci Adv Physical and Materials Sciences Protein-mediated allosteric regulations are essential in biology, but their quantitative characterization continues to posit formidable challenges for both experiments and computations. Here, we combine coevolutionary information, multiscale molecular simulations, and free-energy methods to interrogate and quantify the allosteric regulation of functional changes in protein complexes. We apply this approach to investigate the regulation of adenylyl cyclase (AC) by stimulatory and inhibitory G proteins—a prototypical allosteric system that has long escaped from in-depth molecular characterization. We reveal a surprisingly simple ON/OFF regulation of AC functional dynamics through multiple pathways of information transfer. The binding of G proteins reshapes the free-energy landscape of AC following the classical population-shift paradigm. The model agrees with structural and biochemical data and reveals previously unknown experimentally consistent intermediates. Our approach showcases a general strategy to explore uncharted functional space in complex biomolecular regulations. American Association for the Advancement of Science 2021-09-08 /pmc/articles/PMC8442858/ /pubmed/34516882 http://dx.doi.org/10.1126/sciadv.abj0786 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Physical and Materials Sciences Colizzi, Francesco Orozco, Modesto Probing allosteric regulations with coevolution-driven molecular simulations |
title | Probing allosteric regulations with coevolution-driven molecular simulations |
title_full | Probing allosteric regulations with coevolution-driven molecular simulations |
title_fullStr | Probing allosteric regulations with coevolution-driven molecular simulations |
title_full_unstemmed | Probing allosteric regulations with coevolution-driven molecular simulations |
title_short | Probing allosteric regulations with coevolution-driven molecular simulations |
title_sort | probing allosteric regulations with coevolution-driven molecular simulations |
topic | Physical and Materials Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8442858/ https://www.ncbi.nlm.nih.gov/pubmed/34516882 http://dx.doi.org/10.1126/sciadv.abj0786 |
work_keys_str_mv | AT colizzifrancesco probingallostericregulationswithcoevolutiondrivenmolecularsimulations AT orozcomodesto probingallostericregulationswithcoevolutiondrivenmolecularsimulations |