Cargando…
Mitigation of Pseudomonas syringae virulence by signal inactivation
Pseudomonas syringae is an important plant pathogen of many valuable crops worldwide, with more than 60 identified pathovars. The phytotoxins produced by these organisms were related to the severity of the damage caused to the plant. An emerging strategy to treat bacterial infections relies on inter...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8442906/ https://www.ncbi.nlm.nih.gov/pubmed/34516871 http://dx.doi.org/10.1126/sciadv.abg2293 |
Sumario: | Pseudomonas syringae is an important plant pathogen of many valuable crops worldwide, with more than 60 identified pathovars. The phytotoxins produced by these organisms were related to the severity of the damage caused to the plant. An emerging strategy to treat bacterial infections relies on interference with their signaling systems. In this study, we investigated P. syringae pv. syringae, which produces the virulence factor mangotoxin that causes bacterial apical necrosis on mango leaves. A previously unknown signaling molecule named leudiazen was identified, determined to be unstable and volatile, and responsible for mangotoxin production. A strategy using potassium permanganate, compatible with organic farming, was developed to degrade leudiazen and thus to attenuate the pathogenicity of P. syringae pv. syringae. |
---|