Cargando…

Superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries

Soft structures in nature, such as supercoiled DNA and proteins, can organize into complex hierarchical architectures through multiple noncovalent molecular interactions. Identifying new classes of natural building blocks capable of facilitating long-range hierarchical structuring has remained an el...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiu, Xiaoling, Wang, Xiaoling, He, Yunxiang, Liang, Jieying, Liang, Kang, Tardy, Blaise L., Richardson, Joseph J., Hu, Ming, Wu, Hao, Zhang, Yun, Rojas, Orlando J., Manners, Ian, Guo, Junling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8442931/
https://www.ncbi.nlm.nih.gov/pubmed/34516887
http://dx.doi.org/10.1126/sciadv.abh3482
_version_ 1783753095125139456
author Qiu, Xiaoling
Wang, Xiaoling
He, Yunxiang
Liang, Jieying
Liang, Kang
Tardy, Blaise L.
Richardson, Joseph J.
Hu, Ming
Wu, Hao
Zhang, Yun
Rojas, Orlando J.
Manners, Ian
Guo, Junling
author_facet Qiu, Xiaoling
Wang, Xiaoling
He, Yunxiang
Liang, Jieying
Liang, Kang
Tardy, Blaise L.
Richardson, Joseph J.
Hu, Ming
Wu, Hao
Zhang, Yun
Rojas, Orlando J.
Manners, Ian
Guo, Junling
author_sort Qiu, Xiaoling
collection PubMed
description Soft structures in nature, such as supercoiled DNA and proteins, can organize into complex hierarchical architectures through multiple noncovalent molecular interactions. Identifying new classes of natural building blocks capable of facilitating long-range hierarchical structuring has remained an elusive goal. We report the bottom-up synthesis of a hierarchical metal-phenolic mesocrystal where self-assembly proceeds on different length scales in a spatiotemporally controlled manner. Phenolic-based coordination complexes organize into supramolecular threads that assemble into tertiary nanoscale filaments, lastly packing into quaternary mesocrystals. The hierarchically ordered structures are preserved after thermal conversion into a metal-carbon hybrid framework and can impart outstanding performance to sodium ion batteries, which affords a capability of 72.5 milliampere hours per gram at an ultrahigh rate of 200 amperes per gram and a 90% capacity retention over 15,000 cycles at a current density of 5.0 amperes per gram. This hierarchical structuring of natural polyphenols is expected to find widespread applications.
format Online
Article
Text
id pubmed-8442931
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-84429312021-09-24 Superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries Qiu, Xiaoling Wang, Xiaoling He, Yunxiang Liang, Jieying Liang, Kang Tardy, Blaise L. Richardson, Joseph J. Hu, Ming Wu, Hao Zhang, Yun Rojas, Orlando J. Manners, Ian Guo, Junling Sci Adv Physical and Materials Sciences Soft structures in nature, such as supercoiled DNA and proteins, can organize into complex hierarchical architectures through multiple noncovalent molecular interactions. Identifying new classes of natural building blocks capable of facilitating long-range hierarchical structuring has remained an elusive goal. We report the bottom-up synthesis of a hierarchical metal-phenolic mesocrystal where self-assembly proceeds on different length scales in a spatiotemporally controlled manner. Phenolic-based coordination complexes organize into supramolecular threads that assemble into tertiary nanoscale filaments, lastly packing into quaternary mesocrystals. The hierarchically ordered structures are preserved after thermal conversion into a metal-carbon hybrid framework and can impart outstanding performance to sodium ion batteries, which affords a capability of 72.5 milliampere hours per gram at an ultrahigh rate of 200 amperes per gram and a 90% capacity retention over 15,000 cycles at a current density of 5.0 amperes per gram. This hierarchical structuring of natural polyphenols is expected to find widespread applications. American Association for the Advancement of Science 2021-09-08 /pmc/articles/PMC8442931/ /pubmed/34516887 http://dx.doi.org/10.1126/sciadv.abh3482 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Physical and Materials Sciences
Qiu, Xiaoling
Wang, Xiaoling
He, Yunxiang
Liang, Jieying
Liang, Kang
Tardy, Blaise L.
Richardson, Joseph J.
Hu, Ming
Wu, Hao
Zhang, Yun
Rojas, Orlando J.
Manners, Ian
Guo, Junling
Superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries
title Superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries
title_full Superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries
title_fullStr Superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries
title_full_unstemmed Superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries
title_short Superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries
title_sort superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries
topic Physical and Materials Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8442931/
https://www.ncbi.nlm.nih.gov/pubmed/34516887
http://dx.doi.org/10.1126/sciadv.abh3482
work_keys_str_mv AT qiuxiaoling superstructuredmesocrystalsthroughmultipleinherentmolecularinteractionsforhighlyreversiblesodiumionbatteries
AT wangxiaoling superstructuredmesocrystalsthroughmultipleinherentmolecularinteractionsforhighlyreversiblesodiumionbatteries
AT heyunxiang superstructuredmesocrystalsthroughmultipleinherentmolecularinteractionsforhighlyreversiblesodiumionbatteries
AT liangjieying superstructuredmesocrystalsthroughmultipleinherentmolecularinteractionsforhighlyreversiblesodiumionbatteries
AT liangkang superstructuredmesocrystalsthroughmultipleinherentmolecularinteractionsforhighlyreversiblesodiumionbatteries
AT tardyblaisel superstructuredmesocrystalsthroughmultipleinherentmolecularinteractionsforhighlyreversiblesodiumionbatteries
AT richardsonjosephj superstructuredmesocrystalsthroughmultipleinherentmolecularinteractionsforhighlyreversiblesodiumionbatteries
AT huming superstructuredmesocrystalsthroughmultipleinherentmolecularinteractionsforhighlyreversiblesodiumionbatteries
AT wuhao superstructuredmesocrystalsthroughmultipleinherentmolecularinteractionsforhighlyreversiblesodiumionbatteries
AT zhangyun superstructuredmesocrystalsthroughmultipleinherentmolecularinteractionsforhighlyreversiblesodiumionbatteries
AT rojasorlandoj superstructuredmesocrystalsthroughmultipleinherentmolecularinteractionsforhighlyreversiblesodiumionbatteries
AT mannersian superstructuredmesocrystalsthroughmultipleinherentmolecularinteractionsforhighlyreversiblesodiumionbatteries
AT guojunling superstructuredmesocrystalsthroughmultipleinherentmolecularinteractionsforhighlyreversiblesodiumionbatteries