Cargando…
Comprehensive Assessment of Fine-Grained Wound Images Using a Patch-Based CNN With Context-Preserving Attention
Goal: Chronic wounds affect 6.5 million Americans. Wound assessment via algorithmic analysis of smartphone images has emerged as a viable option for remote assessment. Methods: We comprehensively score wounds based on the clinically-validated Photographic Wound Assessment Tool (PWAT), which comprehe...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8442961/ https://www.ncbi.nlm.nih.gov/pubmed/34532712 http://dx.doi.org/10.1109/OJEMB.2021.3092207 |
Ejemplares similares
-
Fast Attention CNN for Fine-Grained Crack Segmentation
por: Lee, Hyunnam, et al.
Publicado: (2023) -
Attention-Aware Patch-Based CNN for Blind 360-Degree Image Quality Assessment
por: Sendjasni, Abderrezzaq, et al.
Publicado: (2023) -
Fine-Grained Face Annotation Using Deep Multi-Task CNN
por: Celona, Luigi, et al.
Publicado: (2018) -
Fine-Grained Image Classification for Crop Disease Based on Attention Mechanism
por: Yang, Guofeng, et al.
Publicado: (2020) -
Patch Attention Layer of Embedding Handcrafted Features in CNN for Facial Expression Recognition
por: Liang, Xingcan, et al.
Publicado: (2021)