Cargando…
Correction: Prediction of the compressive strength of high-performance self-compacting concrete by an ultrasonic-rebound method based on a GA-BP neural network
Autores principales: | Du, Guoqiang, Bu, Liangtao, Hou, Qi, Zhou, Jing, Lu, Beixin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8443027/ https://www.ncbi.nlm.nih.gov/pubmed/34525132 http://dx.doi.org/10.1371/journal.pone.0257650 |
Ejemplares similares
-
Prediction of the compressive strength of high-performance self-compacting concrete by an ultrasonic-rebound method based on a GA-BP neural network
por: Du, Guoqiang, et al.
Publicado: (2021) -
Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network
por: Bu, Liangtao, et al.
Publicado: (2021) -
Interrelated dataset of rebound numbers, ultrasonic pulse velocities and compressive strengths of drilled concrete cores from an existing structure and new fabricated concrete cubes
por: Gebauer, Daniel, et al.
Publicado: (2023) -
Ultrasonic based concrete defects identification via wavelet packet transform and GA-BP neural network
por: Hu, Tianyu, et al.
Publicado: (2021) -
Characteristic Curve and Its Use in Determining the Compressive Strength of Concrete by the Rebound Hammer Test
por: Kocáb, Dalibor, et al.
Publicado: (2019)