Cargando…
Comparison of machine learning methods for estimating case fatality ratios: An Ebola outbreak simulation study
BACKGROUND: Machine learning (ML) algorithms are now increasingly used in infectious disease epidemiology. Epidemiologists should understand how ML algorithms behave within the context of outbreak data where missingness of data is almost ubiquitous. METHODS: Using simulated data, we use a ML algorit...
Autores principales: | Forna, Alpha, Dorigatti, Ilaria, Nouvellet, Pierre, Donnelly, Christl A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8443081/ https://www.ncbi.nlm.nih.gov/pubmed/34525098 http://dx.doi.org/10.1371/journal.pone.0257005 |
Ejemplares similares
-
Case Fatality Ratio Estimates for the 2013–2016 West African Ebola Epidemic: Application of Boosted Regression Trees for Imputation
por: Forna, Alpha, et al.
Publicado: (2020) -
Spatiotemporal variability in case fatality ratios for the 2013–2016 Ebola epidemic in West Africa
por: Forna, Alpha, et al.
Publicado: (2020) -
Heterogeneities in the case fatality ratio in the West African Ebola outbreak 2013–2016
por: Garske, Tini, et al.
Publicado: (2017) -
Key data for outbreak evaluation: building on the Ebola experience
por: Cori, Anne, et al.
Publicado: (2017) -
Potential Biases in Estimating Absolute and Relative Case-Fatality Risks during Outbreaks
por: Lipsitch, Marc, et al.
Publicado: (2015)