Cargando…
Temporal teleportation with pseudo-density operators: How dynamics emerges from temporal entanglement
We show that, by using temporal quantum correlations as expressed by pseudo-density operators (PDOs), it is possible to recover formally the standard quantum dynamical evolution as a sequence of teleportations in time. We demonstrate that any completely positive evolution can be formally reconstruct...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8443168/ https://www.ncbi.nlm.nih.gov/pubmed/34524847 http://dx.doi.org/10.1126/sciadv.abe4742 |
Sumario: | We show that, by using temporal quantum correlations as expressed by pseudo-density operators (PDOs), it is possible to recover formally the standard quantum dynamical evolution as a sequence of teleportations in time. We demonstrate that any completely positive evolution can be formally reconstructed by teleportation with different temporally correlated states. This provides a different interpretation of maximally correlated PDOs, as resources to induce quantum time evolution. Furthermore, we note that the possibility of this protocol stems from the strict formal correspondence between spatial and temporal entanglement in quantum theory. We proceed to demonstrate experimentally this correspondence, by showing a multipartite violation of generalized temporal and spatial Bell inequalities and verifying agreement with theoretical predictions to a high degree of accuracy, in high-quality photon qubits. |
---|