Cargando…

Passive Fetal Movement Signal Detection System Based on Intelligent Sensing Technology

Fetal movement (FM) is an essential physiological parameter to determine the health status of the fetus. To address the problems of harrowing FM signal extraction and the low recognition rate of traditional machine learning classifiers in FM signal detection, this paper develops a passive FM signal...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Sensong, Peng, Jiansheng, Xu, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8443392/
https://www.ncbi.nlm.nih.gov/pubmed/34540183
http://dx.doi.org/10.1155/2021/1745292
Descripción
Sumario:Fetal movement (FM) is an essential physiological parameter to determine the health status of the fetus. To address the problems of harrowing FM signal extraction and the low recognition rate of traditional machine learning classifiers in FM signal detection, this paper develops a passive FM signal detection system based on intelligent sensing technology. FM signals are obtained from the abdomen of the pregnant woman by using accelerometers. The FM signals are extracted and identified according to the clinical nature of the features hidden in the amplitude and waveform of the FM signals that fluctuate in duration. The system consists of four main stages: (i) FM signal preprocessing, (ii) maternal artifact signal preidentification, (iii) FM signal identification, and (iv) FM classification. Firstly, Kalman filtering is used to reconstruct the FM signal in a continuous low-amplitude noise background. Secondly, the maternal artifact signal is identified using an amplitude threshold algorithm. Then, an innovative dictionary learning algorithm is used to construct a dictionary of FM features, and orthogonal matching pursuit and adaptive filtering algorithms are used to identify the FM signals, respectively. Finally, mask fusion classification is performed based on the multiaxis recognition results. Experiments are conducted to evaluate the performance of the proposed FM detection system using publicly available and self-built accelerated FM datasets. The classification results showed that the orthogonal matching pursuit algorithm was more effective than the adaptive filtering algorithm in identifying FM signals, with a positive prediction value of 89.74%. The proposed FM detection system has great potential and promise for wearable FM health monitoring.