Cargando…
A deep-learning framework for multi-level peptide–protein interaction prediction
Peptide-protein interactions are involved in various fundamental cellular functions and their identification is crucial for designing efficacious peptide therapeutics. Recently, a number of computational methods have been developed to predict peptide-protein interactions. However, most of the existi...
Autores principales: | Lei, Yipin, Li, Shuya, Liu, Ziyi, Wan, Fangping, Tian, Tingzhong, Li, Shao, Zhao, Dan, Zeng, Jianyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8443569/ https://www.ncbi.nlm.nih.gov/pubmed/34526500 http://dx.doi.org/10.1038/s41467-021-25772-4 |
Ejemplares similares
-
EXP2SL: A Machine Learning Framework for Cell-Line-Specific Synthetic Lethality Prediction
por: Wan, Fangping, et al.
Publicado: (2020) -
Full-length ribosome density prediction by a multi-input and multi-output model
por: Tian, Tingzhong, et al.
Publicado: (2021) -
Improving molecular property prediction through a task similarity enhanced transfer learning strategy
por: Li, Han, et al.
Publicado: (2022) -
Modeling multi-species RNA modification through multi-task curriculum learning
por: Xiong, Yuanpeng, et al.
Publicado: (2021) -
DeepCPI: A Deep Learning-based Framework for Large-scale in silico Drug Screening
por: Wan, Fangping, et al.
Publicado: (2019)