Cargando…
Machine learning risk prediction model for acute coronary syndrome and death from use of non-steroidal anti-inflammatory drugs in administrative data
Our aim was to investigate the usefulness of machine learning approaches on linked administrative health data at the population level in predicting older patients’ one-year risk of acute coronary syndrome and death following the use of non-steroidal anti-inflammatory drugs (NSAIDs). Patients from a...
Autores principales: | Lu, Juan, Wang, Ling, Bennamoun, Mohammed, Ward, Isaac, An, Senjian, Sohel, Ferdous, Chow, Benjamin J. W., Dwivedi, Girish, Sanfilippo, Frank M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8443580/ https://www.ncbi.nlm.nih.gov/pubmed/34526544 http://dx.doi.org/10.1038/s41598-021-97643-3 |
Ejemplares similares
-
Feature selection and transformation by machine learning reduce variable numbers and improve prediction for heart failure readmission or death
por: Awan, Saqib E., et al.
Publicado: (2019) -
Machine learning‐based prediction of heart failure readmission or death: implications of choosing the right model and the right metrics
por: Awan, Saqib Ejaz, et al.
Publicado: (2019) -
Automatic Hierarchical Classification of Kelps Using Deep Residual Features
por: Mahmood, Ammar, et al.
Publicado: (2020) -
Applications of machine learning to undifferentiated chest pain in the emergency department: A systematic review
por: Stewart, Jonathon, et al.
Publicado: (2021) -
Transport of pilgrims during Hajj: Evidence from a discrete event simulation study
por: Owaidah, Almoaid, et al.
Publicado: (2023)