Cargando…
A deep transfer learning approach for wearable sleep stage classification with photoplethysmography
Unobtrusive home sleep monitoring using wrist-worn wearable photoplethysmography (PPG) could open the way for better sleep disorder screening and health monitoring. However, PPG is rarely included in large sleep studies with gold-standard sleep annotation from polysomnography. Therefore, training da...
Autores principales: | Radha, Mustafa, Fonseca, Pedro, Moreau, Arnaud, Ross, Marco, Cerny, Andreas, Anderer, Peter, Long, Xi, Aarts, Ronald M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8443610/ https://www.ncbi.nlm.nih.gov/pubmed/34526643 http://dx.doi.org/10.1038/s41746-021-00510-8 |
Ejemplares similares
-
Sleep stage classification from heart-rate variability using long short-term memory neural networks
por: Radha, Mustafa, et al.
Publicado: (2019) -
Direct application of an ECG-based sleep staging algorithm on reflective photoplethysmography data decreases performance
por: van Gilst, M. M., et al.
Publicado: (2020) -
A computationally efficient algorithm for wearable sleep staging in clinical populations
por: Fonseca, Pedro, et al.
Publicado: (2023) -
It is All in the Wrist: Wearable Sleep Staging in a Clinical Population versus Reference Polysomnography
por: Wulterkens, Bernice M, et al.
Publicado: (2021) -
Autonomic arousal detection and cardio-respiratory sleep staging improve the accuracy of home sleep apnea tests
por: Ross, Marco, et al.
Publicado: (2023)