Cargando…
Explainable artificial intelligence based analysis for interpreting infant fNIRS data in developmental cognitive neuroscience
In the last decades, non-invasive and portable neuroimaging techniques, such as functional near infrared spectroscopy (fNIRS), have allowed researchers to study the mechanisms underlying the functional cognitive development of the human brain, thus furthering the potential of Developmental Cognitive...
Autores principales: | Andreu-Perez, Javier, Emberson, Lauren L., Kiani, Mehrin, Filippetti, Maria Laura, Hagras, Hani, Rigato, Silvia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8443619/ https://www.ncbi.nlm.nih.gov/pubmed/34526648 http://dx.doi.org/10.1038/s42003-021-02534-y |
Ejemplares similares
-
Explainable artificial intelligence model to predict brain states from fNIRS signals
por: Shibu, Caleb Jones, et al.
Publicado: (2023) -
Could fNIRS Promote Neuroscience Approach in Clinical Psychology?
por: Adorni, Roberta, et al.
Publicado: (2016) -
Explainable Artificial Intelligence for Neuroscience: Behavioral Neurostimulation
por: Fellous, Jean-Marc, et al.
Publicado: (2019) -
Decoding the infant mind: Multivariate pattern analysis (MVPA) using fNIRS
por: Emberson, Lauren L., et al.
Publicado: (2017) -
Feasibility of fNIRS in Children with Developmental Coordination Disorder
por: Johnson, C., et al.
Publicado: (2022)