Cargando…
Biomolecular simulation based machine learning models accurately predict sites of tolerability to the unnatural amino acid acridonylalanine
The incorporation of unnatural amino acids (Uaas) has provided an avenue for novel chemistries to be explored in biological systems. However, the successful application of Uaas is often hampered by site-specific impacts on protein yield and solubility. Although previous efforts to identify features...
Autores principales: | Giannakoulias, Sam, Shringari, Sumant R., Ferrie, John J., Petersson, E. James |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8443755/ https://www.ncbi.nlm.nih.gov/pubmed/34526629 http://dx.doi.org/10.1038/s41598-021-97965-2 |
Ejemplares similares
-
Editorial: Machine Learning in Biomolecular Simulations
por: Verkhivker, Gennady, et al.
Publicado: (2019) -
Site-Specific Labeling of Proteins Using Unnatural Amino Acids
por: Lee, Kyung Jin, et al.
Publicado: (2019) -
Accurate Biomolecular Simulations Account for Electronic Polarization
por: Melcr, Josef, et al.
Publicado: (2019) -
Rational incorporation of any unnatural amino acid into proteins by machine learning on existing experimental proofs
por: Zhang, Haoran, et al.
Publicado: (2022) -
RF1 Knockout Allows Ribosomal Incorporation of Unnatural Amino Acids at Multiple Sites
por: Johnson, David B.F., et al.
Publicado: (2011)