Cargando…

Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning

IMPORTANCE: Quantitative volumetric measures of retinal disease in optical coherence tomography (OCT) scans are infeasible to perform owing to the time required for manual grading. Expert-level deep learning systems for automatic OCT segmentation have recently been developed. However, the potential...

Descripción completa

Detalles Bibliográficos
Autores principales: Wilson, Marc, Chopra, Reena, Wilson, Megan Z., Cooper, Charlotte, MacWilliams, Patricia, Liu, Yun, Wulczyn, Ellery, Florea, Daniela, Hughes, Cían O., Karthikesalingam, Alan, Khalid, Hagar, Vermeirsch, Sandra, Nicholson, Luke, Keane, Pearse A., Balaskas, Konstantinos, Kelly, Christopher J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Medical Association 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444027/
https://www.ncbi.nlm.nih.gov/pubmed/34236406
http://dx.doi.org/10.1001/jamaophthalmol.2021.2273
_version_ 1784568408391548928
author Wilson, Marc
Chopra, Reena
Wilson, Megan Z.
Cooper, Charlotte
MacWilliams, Patricia
Liu, Yun
Wulczyn, Ellery
Florea, Daniela
Hughes, Cían O.
Karthikesalingam, Alan
Khalid, Hagar
Vermeirsch, Sandra
Nicholson, Luke
Keane, Pearse A.
Balaskas, Konstantinos
Kelly, Christopher J.
author_facet Wilson, Marc
Chopra, Reena
Wilson, Megan Z.
Cooper, Charlotte
MacWilliams, Patricia
Liu, Yun
Wulczyn, Ellery
Florea, Daniela
Hughes, Cían O.
Karthikesalingam, Alan
Khalid, Hagar
Vermeirsch, Sandra
Nicholson, Luke
Keane, Pearse A.
Balaskas, Konstantinos
Kelly, Christopher J.
author_sort Wilson, Marc
collection PubMed
description IMPORTANCE: Quantitative volumetric measures of retinal disease in optical coherence tomography (OCT) scans are infeasible to perform owing to the time required for manual grading. Expert-level deep learning systems for automatic OCT segmentation have recently been developed. However, the potential clinical applicability of these systems is largely unknown. OBJECTIVE: To evaluate a deep learning model for whole-volume segmentation of 4 clinically important pathological features and assess clinical applicability. DESIGN, SETTING, PARTICIPANTS: This diagnostic study used OCT data from 173 patients with a total of 15 558 B-scans, treated at Moorfields Eye Hospital. The data set included 2 common OCT devices and 2 macular conditions: wet age-related macular degeneration (107 scans) and diabetic macular edema (66 scans), covering the full range of severity, and from 3 points during treatment. Two expert graders performed pixel-level segmentations of intraretinal fluid, subretinal fluid, subretinal hyperreflective material, and pigment epithelial detachment, including all B-scans in each OCT volume, taking as long as 50 hours per scan. Quantitative evaluation of whole-volume model segmentations was performed. Qualitative evaluation of clinical applicability by 3 retinal experts was also conducted. Data were collected from June 1, 2012, to January 31, 2017, for set 1 and from January 1 to December 31, 2017, for set 2; graded between November 2018 and January 2020; and analyzed from February 2020 to November 2020. MAIN OUTCOMES AND MEASURES: Rating and stack ranking for clinical applicability by retinal specialists, model-grader agreement for voxelwise segmentations, and total volume evaluated using Dice similarity coefficients, Bland-Altman plots, and intraclass correlation coefficients. RESULTS: Among the 173 patients included in the analysis (92 [53%] women), qualitative assessment found that automated whole-volume segmentation ranked better than or comparable to at least 1 expert grader in 127 scans (73%; 95% CI, 66%-79%). A neutral or positive rating was given to 135 model segmentations (78%; 95% CI, 71%-84%) and 309 expert gradings (2 per scan) (89%; 95% CI, 86%-92%). The model was rated neutrally or positively in 86% to 92% of diabetic macular edema scans and 53% to 87% of age-related macular degeneration scans. Intraclass correlations ranged from 0.33 (95% CI, 0.08-0.96) to 0.96 (95% CI, 0.90-0.99). Dice similarity coefficients ranged from 0.43 (95% CI, 0.29-0.66) to 0.78 (95% CI, 0.57-0.85). CONCLUSIONS AND RELEVANCE: This deep learning–based segmentation tool provided clinically useful measures of retinal disease that would otherwise be infeasible to obtain. Qualitative evaluation was additionally important to reveal clinical applicability for both care management and research.
format Online
Article
Text
id pubmed-8444027
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Medical Association
record_format MEDLINE/PubMed
spelling pubmed-84440272021-10-04 Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning Wilson, Marc Chopra, Reena Wilson, Megan Z. Cooper, Charlotte MacWilliams, Patricia Liu, Yun Wulczyn, Ellery Florea, Daniela Hughes, Cían O. Karthikesalingam, Alan Khalid, Hagar Vermeirsch, Sandra Nicholson, Luke Keane, Pearse A. Balaskas, Konstantinos Kelly, Christopher J. JAMA Ophthalmol Original Investigation IMPORTANCE: Quantitative volumetric measures of retinal disease in optical coherence tomography (OCT) scans are infeasible to perform owing to the time required for manual grading. Expert-level deep learning systems for automatic OCT segmentation have recently been developed. However, the potential clinical applicability of these systems is largely unknown. OBJECTIVE: To evaluate a deep learning model for whole-volume segmentation of 4 clinically important pathological features and assess clinical applicability. DESIGN, SETTING, PARTICIPANTS: This diagnostic study used OCT data from 173 patients with a total of 15 558 B-scans, treated at Moorfields Eye Hospital. The data set included 2 common OCT devices and 2 macular conditions: wet age-related macular degeneration (107 scans) and diabetic macular edema (66 scans), covering the full range of severity, and from 3 points during treatment. Two expert graders performed pixel-level segmentations of intraretinal fluid, subretinal fluid, subretinal hyperreflective material, and pigment epithelial detachment, including all B-scans in each OCT volume, taking as long as 50 hours per scan. Quantitative evaluation of whole-volume model segmentations was performed. Qualitative evaluation of clinical applicability by 3 retinal experts was also conducted. Data were collected from June 1, 2012, to January 31, 2017, for set 1 and from January 1 to December 31, 2017, for set 2; graded between November 2018 and January 2020; and analyzed from February 2020 to November 2020. MAIN OUTCOMES AND MEASURES: Rating and stack ranking for clinical applicability by retinal specialists, model-grader agreement for voxelwise segmentations, and total volume evaluated using Dice similarity coefficients, Bland-Altman plots, and intraclass correlation coefficients. RESULTS: Among the 173 patients included in the analysis (92 [53%] women), qualitative assessment found that automated whole-volume segmentation ranked better than or comparable to at least 1 expert grader in 127 scans (73%; 95% CI, 66%-79%). A neutral or positive rating was given to 135 model segmentations (78%; 95% CI, 71%-84%) and 309 expert gradings (2 per scan) (89%; 95% CI, 86%-92%). The model was rated neutrally or positively in 86% to 92% of diabetic macular edema scans and 53% to 87% of age-related macular degeneration scans. Intraclass correlations ranged from 0.33 (95% CI, 0.08-0.96) to 0.96 (95% CI, 0.90-0.99). Dice similarity coefficients ranged from 0.43 (95% CI, 0.29-0.66) to 0.78 (95% CI, 0.57-0.85). CONCLUSIONS AND RELEVANCE: This deep learning–based segmentation tool provided clinically useful measures of retinal disease that would otherwise be infeasible to obtain. Qualitative evaluation was additionally important to reveal clinical applicability for both care management and research. American Medical Association 2021-07-08 2021-09 /pmc/articles/PMC8444027/ /pubmed/34236406 http://dx.doi.org/10.1001/jamaophthalmol.2021.2273 Text en Copyright 2021 Wilson M et al. JAMA Ophthalmology. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the CC-BY-NC-ND License.
spellingShingle Original Investigation
Wilson, Marc
Chopra, Reena
Wilson, Megan Z.
Cooper, Charlotte
MacWilliams, Patricia
Liu, Yun
Wulczyn, Ellery
Florea, Daniela
Hughes, Cían O.
Karthikesalingam, Alan
Khalid, Hagar
Vermeirsch, Sandra
Nicholson, Luke
Keane, Pearse A.
Balaskas, Konstantinos
Kelly, Christopher J.
Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning
title Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning
title_full Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning
title_fullStr Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning
title_full_unstemmed Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning
title_short Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning
title_sort validation and clinical applicability of whole-volume automated segmentation of optical coherence tomography in retinal disease using deep learning
topic Original Investigation
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444027/
https://www.ncbi.nlm.nih.gov/pubmed/34236406
http://dx.doi.org/10.1001/jamaophthalmol.2021.2273
work_keys_str_mv AT wilsonmarc validationandclinicalapplicabilityofwholevolumeautomatedsegmentationofopticalcoherencetomographyinretinaldiseaseusingdeeplearning
AT choprareena validationandclinicalapplicabilityofwholevolumeautomatedsegmentationofopticalcoherencetomographyinretinaldiseaseusingdeeplearning
AT wilsonmeganz validationandclinicalapplicabilityofwholevolumeautomatedsegmentationofopticalcoherencetomographyinretinaldiseaseusingdeeplearning
AT coopercharlotte validationandclinicalapplicabilityofwholevolumeautomatedsegmentationofopticalcoherencetomographyinretinaldiseaseusingdeeplearning
AT macwilliamspatricia validationandclinicalapplicabilityofwholevolumeautomatedsegmentationofopticalcoherencetomographyinretinaldiseaseusingdeeplearning
AT liuyun validationandclinicalapplicabilityofwholevolumeautomatedsegmentationofopticalcoherencetomographyinretinaldiseaseusingdeeplearning
AT wulczynellery validationandclinicalapplicabilityofwholevolumeautomatedsegmentationofopticalcoherencetomographyinretinaldiseaseusingdeeplearning
AT floreadaniela validationandclinicalapplicabilityofwholevolumeautomatedsegmentationofopticalcoherencetomographyinretinaldiseaseusingdeeplearning
AT hughesciano validationandclinicalapplicabilityofwholevolumeautomatedsegmentationofopticalcoherencetomographyinretinaldiseaseusingdeeplearning
AT karthikesalingamalan validationandclinicalapplicabilityofwholevolumeautomatedsegmentationofopticalcoherencetomographyinretinaldiseaseusingdeeplearning
AT khalidhagar validationandclinicalapplicabilityofwholevolumeautomatedsegmentationofopticalcoherencetomographyinretinaldiseaseusingdeeplearning
AT vermeirschsandra validationandclinicalapplicabilityofwholevolumeautomatedsegmentationofopticalcoherencetomographyinretinaldiseaseusingdeeplearning
AT nicholsonluke validationandclinicalapplicabilityofwholevolumeautomatedsegmentationofopticalcoherencetomographyinretinaldiseaseusingdeeplearning
AT keanepearsea validationandclinicalapplicabilityofwholevolumeautomatedsegmentationofopticalcoherencetomographyinretinaldiseaseusingdeeplearning
AT balaskaskonstantinos validationandclinicalapplicabilityofwholevolumeautomatedsegmentationofopticalcoherencetomographyinretinaldiseaseusingdeeplearning
AT kellychristopherj validationandclinicalapplicabilityofwholevolumeautomatedsegmentationofopticalcoherencetomographyinretinaldiseaseusingdeeplearning