Cargando…
Predicting Health Material Accessibility: Development of Machine Learning Algorithms
BACKGROUND: Current health information understandability research uses medical readability formulas to assess the cognitive difficulty of health education resources. This is based on an implicit assumption that medical domain knowledge represented by uncommon words or jargon form the sole barriers t...
Autores principales: | Ji, Meng, Liu, Yanmeng, Hao, Tianyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444043/ https://www.ncbi.nlm.nih.gov/pubmed/34468321 http://dx.doi.org/10.2196/29175 |
Ejemplares similares
-
Correction: Predicting Health Material Accessibility: Development of Machine Learning Algorithms
por: Ji, Meng, et al.
Publicado: (2021) -
Predicting Writing Styles of Web-Based Materials for Children’s Health Education Using the Selection of Semantic Features: Machine Learning Approach
por: Xie, Wenxiu, et al.
Publicado: (2021) -
Use of Machine Learning Algorithms to Predict the Understandability of Health Education Materials: Development and Evaluation Study
por: Ji, Meng, et al.
Publicado: (2021) -
Predicting the Easiness and Complexity of English Health Materials for International Tertiary Students With Linguistically Enhanced Machine Learning Algorithms: Development and Validation Study
por: Xie, Wenxiu, et al.
Publicado: (2021) -
Predicting the Linguistic Accessibility of Chinese Health Translations: Machine Learning Algorithm Development
por: Ji, Meng, et al.
Publicado: (2021)