Cargando…
A new affinity matrix weighted k-nearest neighbors graph to improve spectral clustering accuracy
Researchers have thought about clustering approaches that incorporate traditional clustering methods and deep learning techniques. These approaches normally boost the performance of clustering. Getting knowledge from large data-sets is quite an interesting task. In this case, we use some dimensional...
Autores principales: | Ahmed, Muhammad Jamal, Saeed, Faisal, Paul, Anand, Jan, Sadeeq, Seo, Hyuncheol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444071/ https://www.ncbi.nlm.nih.gov/pubmed/34604521 http://dx.doi.org/10.7717/peerj-cs.692 |
Ejemplares similares
-
Single-cell and Spatial Transcriptomics Clustering with an Optimized Adaptive K-Nearest Neighbor Graph
por: Li, Jia, et al.
Publicado: (2023) -
Robust and efficient single-cell Hi-C clustering with approximate k-nearest neighbor graphs
por: Wolff, Joachim, et al.
Publicado: (2021) -
Nearest-neighbor NMR spectroscopy: categorizing spectral peaks by their adjacent nuclei
por: Behera, Soumya P., et al.
Publicado: (2020) -
Lectures on the nearest neighbor method
por: Biau, Gérard, et al.
Publicado: (2015) -
The k conditional nearest neighbor algorithm for classification and class probability estimation
por: Gweon, Hyukjun, et al.
Publicado: (2019)