Cargando…
Semi-supervised associative classification using ant colony optimization algorithm
Labeled data is the main ingredient for classification tasks. Labeled data is not always available and free. Semi-supervised learning solves the problem of labeling the unlabeled instances through heuristics. Self-training is one of the most widely-used comprehensible approaches for labeling data. T...
Autores principales: | Awan, Hamid Hussain, Shahzad, Waseem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444075/ https://www.ncbi.nlm.nih.gov/pubmed/34604517 http://dx.doi.org/10.7717/peerj-cs.676 |
Ejemplares similares
-
GenACO a multi-objective cached data offloading optimization based on genetic algorithm and ant colony optimization
por: Indana Zulfa, Mulki, et al.
Publicado: (2021) -
Study on a hybrid algorithm combining enhanced ant colony optimization and double improved simulated annealing via clustering in the Traveling Salesman Problem (TSP)
por: Hao, Tan, et al.
Publicado: (2023) -
Semi-supervised oblique predictive clustering trees
por: Stepišnik, Tomaž, et al.
Publicado: (2021) -
Persistent homology classification algorithm
por: De Lara, Mark Lexter D.
Publicado: (2023) -
Design of feature selection algorithm for high-dimensional network data based on supervised discriminant projection
por: Zhang, Zongfu, et al.
Publicado: (2023)