Cargando…
A knowledge graph based question answering method for medical domain
Question answering (QA) is a hot field of research in Natural Language Processing. A big challenge in this field is to answer questions from knowledge-dependable domain. Since traditional QA hardly satisfies some knowledge-dependable situations, such as disease diagnosis, drug recommendation, etc. I...
Autores principales: | Huang, Xiaofeng, Zhang, Jixin, Xu, Zisang, Ou, Lu, Tong, Jianbin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444078/ https://www.ncbi.nlm.nih.gov/pubmed/34604514 http://dx.doi.org/10.7717/peerj-cs.667 |
Ejemplares similares
-
Deep learning-based approach for Arabic open domain question answering
por: Alsubhi, Kholoud, et al.
Publicado: (2022) -
A data-centric way to improve entity linking in knowledge-based question answering
por: Liu, Shuo, et al.
Publicado: (2023) -
The multi-modal fusion in visual question answering: a review of attention mechanisms
por: Lu, Siyu, et al.
Publicado: (2023) -
Text-Graph Enhanced Knowledge Graph Representation Learning
por: Hu, Linmei, et al.
Publicado: (2021) -
Rare disease-based scientific annotation knowledge graph
por: Zhu, Qian, et al.
Publicado: (2022)